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ABSTRACT. We consider the reverse math strength of the statement CD-M:
“Every completely determined Borel set is measurable.” Over WWKLg, we
obtain the following results analogous to the previously studied category case:
(1) CD-M lies strictly between ATRg and L,;,.,-CA.
(2) Whenever M C 2¢ is the second-order part of an w-model of CD-M, then
for every Z € M, there is a R € M such that R is A%—random relative
to Z.
On the other hand, without WWKLy, all sets have measure zero (as measured
according to CD-M), and it follows vacuously that “WWKLy implies CD-M
over RCAg.

1. INTRODUCTION

The notion of a completely determined Borel set was introduced in [ADM™20]
to permit the reverse mathematics analysis of weak principles involving Borel sets.
In the standard treatment of Borel sets in reverse mathematics [Sim09b], a Borel
set is any well-founded tree T" whose leaves are labeled with clopen sets and whose
interior nodes are labeled with intersections or unions. A real X € 2¢ is then
said to belong to the set coded by T if and only if there is an evaluation map, a
function f : T — {0,1} such that f(o) = 1 if and only if X is in the set coded
by Ty := {7 : 071 € T}. While arithmetic transfinite recursion (ATRy) suffices to
construct evaluation maps for each X, in general it is also required. As a result,
most principles concerning an arbitrary Borel set reverse to ATR( simply because
most such principles have a conclusion that presupposes an element X in the Borel
set.

An exception was encountered by [DFSW21] in their analysis of the Borel dual
Ramsey theorem. The hypothesis of this theorem posits {-many Borel sets whose
union is the entire space. In order to say the union is the entire space, the existence
of evaluation maps for each X must be a part of the hypothesis. That is, an instance
of the Borel dual Ramsey theorem is not well-defined unless the given Borel sets
are completely determined, meaning that each X has an evaluation map.

This example fueled the idea that the lack of interesting reversals for weak prin-
ciples involving Borel sets could be remedied by restricting attention to completely
determined Borel sets. This was borne out in [ADM™20], in which the following
was proven about the principle CD-PB: “Every completely determined Borel set
has the property of Baire.”

The author was supported by grant DMS-1854107 from the National Science Foundation of
the United States and by the Cada R. and Susan Wynn Grove Early Career Professorship in
Mathematics. Part of the work was done during the author’s IMS-supported visit to the Institute
for Mathematical Sciences, National University of Singapore in 2019.
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Theorem 1.1 ([ADMT20]). The principle CD-PB is strictly weaker than ATR,.
FEvery w-model M of CD-PB is closed under hyperarithmetic reduction, and for
every Z € M, there is some G € M that is A}(Z)-generic.

In this paper we do the same for the principle “every Borel set is measurable.”
Similar results are obtained by similar methods. The only new twist is the need
to work with an appropriate meaning of “measurable” for a Borel set; there are
several candidates. This delicate task has already been undertaken by Simpson,
X. Yu, Brown, Giusto and others (see for example [Sim09b, Chapter X], [Yu93],
[Yu94], and [BGS02]). We summarize their work and give the sometimes more
detailed versions of the results needed for our application.

We then define the principle CD-M: “Every completely determined Borel set is
measurable.” We show that CD-M follows from —“WWKL, (for the simple reason
that “WWKLy implies the Cantor space has measure 0, and thus every subset of
it is also measure 0). On the other hand, working over WWKLg, we obtain results
similar to the category case.

In [ADM™20], a model was constructed in which a Baire approximation to a
given completely determined Borel set B was obtained without ATRg by polling
¥1(B)-generics about their membership in B. We do essentially the same to con-
struct a proof of measurability of a given completely determined set B, but using
[T} (B)-randoms. The result of this polling is exactly an element f € L'(2*), so no
translation is required to obtain a code for a measurable set as defined in [Sim09b,
Chapter X]. The main results of this paper are as follows.

Theorem 1.2. The principle WWKLy+ CD-M is strictly weaker than ATRy. Every
w-model M of WWKLy + CD-M is closed under hyperarithmetic reduction, and for
every Z € M, there is some R € M that is A}(Z)-random.

The related topic of measure-theoretic regularity (abbreviated MTR) was inves-
tigated by Simpson in [Sim09a]. By definition, an w-model M is an MTR-model
if every set that is effectively Borel in a parameter X from M contains a 39(Y)
subset of the same measure, for some Y € M. The above theorem implies that
every w-model of WWKLy + CD-M is an MTR-model, because to be an MTR-
model it suffices to be closed under hyperarithmetic reduction. However, there are
MTR-models which satisfy, for example, WWKLg but not WKL ([Sim09a, Theorem
7.4]). So being an MTR-model is a strictly weaker notion than being an w-model
of WWKLy + CD-M.

These results were first presented by the author at the Institute for Mathematical
Sciences workshop Higher Recursion Theory and Set Theory in 2019, using a version
of Proposition 4.5 to quickly move the base theory to ACAg, and using an ad hoc
notion of a “function measuring a set” which was later found to essentially coincide
with the notion of a measurable characteristic function previously proposed by
Simpson and several of his collaborators. The author would like to thank Steve
Simpson for his suggestion to lower the base theory and for bringing that connection
to light. Thanks go also to the anonymous referee who provided further helpful
suggestions. Finally, the author would like to thank Ted Slaman, her PhD advisor,
for his support and mentorship, his good humor and sound principles, and his
excellent body of research which this volume celebrates.
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2. NOTATION AND PRELIMINARIES

We use the notation and conventions of [ADM™20]. In that paper, much more
background and context can be found in the introduction. The eth Turing func-
tional is denoted ®.. Elements of w<% are denoted by o, T and elements of 2<% by
p,q. We write ¢ < 7 to indicate that o is an initial segment of 7, with < if ¢ # 7.
For p € 2<% the notation [p] refers to the cylinder {X € 2% : p < X}. The empty
string is denoted by A. A string with a single component of value n € w is denoted
by (n). String concatenation is denoted by o7. Usually we write on instead of the
more technically correct but uglier o(n).

If U is a set of strings (for example, a tree, or a coded open subset of 2¢), and
o is any string, we write 0~ U to mean {o7: 7 € U}. If T is a tree and o € T, we
write T, to mean {7 : o7 € T}, and if (n) € T, we write T, to mean {7 : nT € T'}.

We assume familiarity with reverse mathematics, in particular the systems RCA,
WWKLy, ACAy and ATRy. We note that effective transfinite recursion and arith-
metic transfinite induction can be carried out in ACAy. We identify an w-model
M of second order arithmetic with its second-order part, writing X € M to mean
that X is an element of the second-order part of M.

We assume familiarity with ordinal notations and pseudo-ordinals. Kleene’s O
is denoted by O. The relation <, is the transitive closure of the relation defined
by 1 <, zifzx#1, z <, 2% and ®.(n) <, 3-5°. We will not distinguish between
ordinals and their notations. Additionally, if b € O, we write b+ 1 for the successor
of b (rather than the more technically correct but cumbersome 2°) and b+ O(1) for
the outcome of taking some fixed constant number of successors of b. If b € O the
unique jump hierarchy on b is denoted Hp. All these concepts can be relativized to
an oracle Z. Kleene’s O also has a X1 superset O*, defined as the intersection of
all X € HYPsuch that 1 € X, a € X = 2% € X, and

Vn[®.(n) € X and ®.(n) <, P.(n+1)] = 3-5°€ X.

Observe also that O is contained in O*. The elements of O* \ O are called pseudo-
ordinals. For more details, see the introduction of [ADM™20)].

AT C w<¥ is well-founded if it has no infinite path. If T is any tree, and
p: T — OF we say that p ranks T if for all o and n such that o”™n € T, we
have p(c7n) <, p(o), and for each leaf o € T, p(c) = 1. If T is ranked by p and
p(A) = a, we say that T is a-ranked by p. If a € O and T is a-ranked then T is
well-founded, but it is possible and useful for an ill-founded tree to be ranked by a
pseudo-ordinal. A tree T is alternating if whenever o € T is a [, then each on € T
is either a | J or a leaf, and similarly if o € T is a |, then each on € T is either a
() or a leaf.

A labeled Borel code is a well-founded tree T' C w<* whose leaves are labeled by
basic open sets or their complements, and whose inner nodes are labeled by | or ).
The Borel set associated to a Borel code is defined by induction, interpreting the
labels in the obvious way. Any Borel set can be represented this way, by applying
DeMorgan’s laws to push complementation out to the leaves. A formula of L, .
is a well-founded tree whose interior nodes are labeled with A (conjunction) and \/
(disjunction) and whose leaves are labeled with the symbols true or false.

There is a computable procedure which, for any b € O and any n € w, outputs a
b+ O(1)-ranked alternating formula of L, ,, which holds true if and only if n € Hy,.
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If T is a labeled Borel code and X € 2¥, an evaluation map for X € T is a
function f : T — {0, 1} such that

e If o is a leaf, f(o) =1 if and only if X is in the clopen set coded by ¢(c).

e If 5 is a union node, f(o) =1 if and only if f(o"n) =1 for some n € w.

e If o is an intersection node, f(o) = 1 if and only if f(c"n) = 1 for all

necw.

We say that X is in the set coded by T, denoted X € |T|, if there is an evaluation
map f for X in T such that f(A\) = 1. Note that X € |T'| is a ¥{ statement. In
ACA,, evaluation maps are unique when they exist. If T is ill-founded, the notation
|T'| may not have meaning outside of a given model. If T is a truly well-founded
Borel code, we do use |T'| outside of the context of a model to denote the elements
of the set that T codes.

A Borel code T is completely determined if every X € 2“ has an evaluation
map in 7. A formula ¢ of L, ., is completely determined if there is map f :
¢ — {true, false} that agrees with ¢ on the leaves and satisfies the logic of ¢ at
interior nodes. The principle L, ,,-CA states that whenever (¢, )necw is a sequence
of completely determined formulas of Ly, ,,, then {n : ¢,, is true} exists.

We assume familiarity with higher randomness. The key theorems we need are:

Theorem 2.1 ([Ste73, Ste75]). A real R € 2% is IIi-random if and only if it is

Al-random and wf = w§*.

Theorem 2.2 ([HNO07]). For Ry, Ry € 2%, we have Ry ® Ry is I} -random if and
only if Ry and Ry are relatively 11} -random.

Theorem 2.3 ([CNYO08]). If Ry® Ry is II}-random, then A}(Ro) NA{(Ry) = Af.
3. MEASURE THEORY IN REVERSE MATHEMATICS

Historically, measure theory developed as a third-order theory. Classically, a
measure is a set function from a o-algebra of subsets of a space to the non-negative
reals. Therefore, although much of measure theory can be developed within second-
order arithmetic, this development has required some care and some non-trivial
choices. We now summarize work of Simpson, X. Yu, Brown, and Giusto [Yu90,
YS90, Yu93, Yu94, BGS02, Sim09b], in which this development took place.

In the context of second-order arithmetic, all the relevant information about a
measure space (X, i, S) is already contained in the values that 1 takes on an algebra
which generates S as a c-algebra. When X is a separable complete metric space
space and § is the Borel sets, a countable generating algebra is naturally obtained
by taking all finite Boolean combinations of basic open sets. In the case of Cantor
space 2%, this approach works out very cleanly because the basic open sets (and
thus all elements of the generating algebra) are clopen. However, for an arbitrary
separable complete metric space, a problem arises. What if there is an atom on the
boundary of a basic open set U? Is it fair to ask that our encoding of a measure p
be able to precisely compute p(U) and u(U€)? (Because a typical open set V' can
only be represented as an infinite enumeration of its basic open subsets, its measure
w(V') would be at best c.e., not computable, in a description of y and V.) Another
way of asking the same question is: for the purposes of constructive mathematics,
what is a suitable topology to put on the space of Borel measures on X7

When X is Cantor space, a popular representation choice has been to to name a
measure p with a function from 2<% to R which records the measure of each basic
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clopen set (see for example [DM13]). This representation induces the so-called
weak topology on the space of probability measures on X (see for example [Bog07,
Definition 8.2.1]). This is the same topology induced by the Prohorov metric (see
for example [Bog07, Theorem 8.3.2]), and also coincides with the weak-* topology
on C(X)* (see the discussion following Definition 8.2.1 in [Bog07]). Restricting
attention to probability measures on compact complete separable metric spaces,
Yu also settled on the same topology in [Yu93], and made the following definition.

Definition 3.1. Let X be a compact complete separable metric space. A Borel
probability measure p on X is a bounded positive linear functional p: C(X) — R
with p(l) = 1.

Here C(X) denotes the Banach space of continuous real-valued functions on X
with the supremum norm, and 1 € C(X) denotes the constant function. Care is
required in the definition of C'(X). It is not simply the collection of continuous
function on X equipped with the supremum norm, because in weak subsystems
of second-order arithmetic, a continuous function on a compact space X need not
have a supremum. Instead, C'(X) is defined as a complete separable metric space
by choosing a particularly well-behaved collection of continuous functions to be the
dense subset. The details are given in [Sim09b, Exercise 4.2.13], in which it is also
established that C'(X) consists of precisely those continuous functions from X to R
which also possess a modulus of uniform continuity. Therefore, while a measure p
on X is defined by specifying how to integrate elements of C'(X) with respect to p,
it does not follow that every continuous function on X is p-integrable; only those
with a modulus of uniform continuity come with this guarantee.

An unavoidable drawback to Definition 3.1 is that it puts a small distance be-
tween the definition of a measure and its basic function of assigning sizes to sets.
Therefore, it is necessary to make a further definition for “the measure of an open
set” (and subsequently a further definition for the measure of an arithmetic set,
etc. leading up to the notion of a measurable set). At each point of definition, a
choice arises: should the measure assignment be intensional (depending only on
the description of the set in question) or extensional (depending on only on the
membership of the set in question)?

To understand the tension here, consider that if U is any component of a universal
Martin-Lof test in Cantor space with its usual fair-coin measure, then statement
U = 2% holds in REC. Thus in REC, we cannot simultaneously have both of these
two desirable properties:

(1) If S C 2<% is prefix-free, then p (U, csl0]) =2
(2) If A= B then u(A) = u(B).
Note that the first is an intensional property and the second is an extensional
property. Although both are clearly wanted, the second seems more essential. Thus
the extensional definition for the measure of an open set is the one which appears
in [Sim09b].

Definition 3.2 (RCAq). Let u be a Borel probability measure on X. Let U be an
open subset of X. The p-measure of U is defined as
w(U) =sup{u(f): f e C(X),0< f<1,f(z)=0 forx e X \U}.

In the absence of ACAq, this supremum may not exist as a number, but state-
ments about p(U) may still be made in weaker systems by simply substituting the

—lo]
oces 2
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above definition of u(U) in any sentence which makes a claim about this quan-
tity. For example, it holds in RCAq that U C V implies that p(U) < p(V). Such
statements are said to hold in a “virtual” or “comparative” sense.

Observe that this extensional definition also gives the “right” values on Can-
tor space with the fair coin measure when U is a finite union of non-intersecting
cylinders U = Uj<pn[pi]. That is, u(Ui<n[pi]) = > iz, 2~ Ipil,

On the other hand, in RCAy we can always assume that open subsets of Cantor
space are given by prefix-free enumerations of elements of 2<%, so we can also give
the following intensional definition of measure of an open set in Cantor space:

Definition 3.3 (RCAy). If U is an open subset of 2¢ given by U = J, . [ps], where
each p; € 2<% and where {p; : i € w} is prefiz-free, then define the intensional
measure of U by py(U) =, 27 Ipil.

The intensional and extensional definitions fully coincide under WWKL,.

Theorem 3.4 ([YS90]; see also [BGS02]). Over RCAg, WWKLg is equivalent to
the statement that for every compact separable metric space X and every measure
woon X, u is countably additive. That is, for every sequence of open sets U,

lim u(Un<vUn) = pn(J Un).

Corollary 3.5 (WWKLg). For all open sets U C 2%, u(U) = pur(U).

One final intensional notion of a measurable set is needed for the development
of measure theory.

Definition 3.6. A rapidly null G5 set is a G5 set (), Upn such that for each n,
[L](Un) < 27™,

Note: a Martin-Lof test is just a computably presented rapidly null G set.

Theorem 3.7 ([ADR12]). Over RCAq, WWKLy is equivalent to the statement that
if A is a rapidly null G5 subset of 2¥, then A # 2%.

Thus in WWKLg, a p-measurable set may be non-vacuously defined as follows.
Let pu: C(X) — R be a positive Borel probability measure. Let L'(X, i) denote the
completion of C'(X) with respect to the L' norm defined by ||f —g|[1 = [ |f — gl
Recall that a sequence (x,,) of points of a metric space is called rapidly Cauchy if
for all n, we have d(z,,7,.1) < 27". Each element of L'(X, ) is represented by
many names, where a name is a sequence (fy,)ncw of functions from C(X) that is
rapidly Cauchy for the L' norm.

Definition 3.8 ([BGS02]). A measurable characteristic function is a function f €
LY(X, ) such that f(z) € {0,1} for all  outside a rapidly null Gs set. A set E is
measurable if there is some f € L'(X, ) such that f = xg outside a rapidly null
Gs set.

Here xg denotes the characteristic function of . The measure of E is then
defined as u(E) = u(f), where f = xg almost everywhere as above. This is well-
defined and locally well-behaved by the following results of X. Yu [Yu94].

Theorem 3.9 (WWKLg). For f, f' € LY(X,p), ||f — f'|l1 = 0 if and only if f = f’
outside of a rapidly null G5 set. If f < f' outside of a rapidly null Gs set, then

u(f) < u(f').
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For the rest of this paragraph, WWKLy is assumed. Observe now that if U C 2%
is open and if U is measurable in the above sense (that is, xyp € L' (X, 1)), then we
have p(U) = p1(U) = p(xv). The last equality follows because if U = J,_,[pi].
the functions xy,_,,[p,) are continuous and converge to xy in the L! norm. Finally,
if A is a rapidly null Gs set, then pu(xa) = pr(A) = 0 because x4 = 0 outside of
A itself. Therefore, when measurable characteristic functions for open or rapidly
null G5 sets exist, all our ways of defining measures for these sets coincide. The
existence of a measurable characteristic function for an open set also guarantees
that the measure of that open set exists in the model (and thus can be discussed
directly, not just comparatively).

Finally, we will need to make use of some more explicit versions of known results
from the literature. For example, we want to use Theorem 3.9, but as stated it does
not give any bounds on the complexity of the rapidly null G5 set. However, those
bounds do exist and we need the uniformity that comes with them. So below we
reprove several results in order to clarify the complexity of the null set of points that
are being discarded. From here forward, we also restrict our attention to Cantor
space with the fair coin measure, which is denoted by A.

First, recall that if A, is a sequence of rapidly null G5 sets A,, = [, An i, the
same trick used for producing a universal Martin-Lof test can also produce a rapidly
null G5 set A D J,, An. Just let U; =J,, Anntjt1, and let A = ﬂj Uj.

Much but not all of the rest of this section has been presented in [BGS02].

Proposition 3.10 (WWKLg). Suppose that (f;) is a sequence of ideal continuous
functions of C(X) which is rapidly Cauchy for the L* norm. Let

N

Ap={z:3N Y |fi(x) = fira(x)| > 27"}

i=2n+1

Then pu(A,) <27,

Proof. Formally, A, is a union of basic open sets (J;[p;] satisfying the condition.
We can assume the [p;]| are disjoint. By countable additivity, it suffices to show

that u(B) < 27" for all sets B = Uj<k[p;]. Let N be large enough to witness that
[p;] C A, for all j < k. We have

N N
27"u(B) = /2_"XB < / Solfi—fiml= D) /|fi — fipl <27
1=2n+1 1=2n-+1

Thus p(B) < 27", as needed. O

The corollaries use ACAg only to guarantee that a Cauchy sequence converges.

Corollary 3.11 (ACAg). A name (f;) for an element of L*(2%) converges pointwise
a.e. Furthermore, this pointwise convergence is achieved outside of the rapidly null

Gs set
AU 4

k n>k

where A, are defined as above.
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Corollary 3.12 (WWKLg). A name (f;) for an element of L'(2¥) converges umi-
formly on each closed set
By =2\ | 4,
n>k

where A,, are defined as above. Furthermore, the modulus of uniform convergence
of fi on By, is primitive recursive: if m > 2max{f, k}, then |fn(z) — f(x)| < 27
Proof. Let n = max{/,k} and x € Bg. Then By N A, = (), and thus the series
fm(@) + 3252, (fir1(z) — fi(x)) converges absolutely, with

S i) = fitw) < >0 figale) = filz) <27 <278

i=m i=2n-+1

(]

Corollary 3.13 (ACAy). If (f;) and (g;) are two names for the same element of
L1(2%), then

lim f;(x) = lim g;(z)
for almost all x. Furthermore, this pointwise convergence is achieved outside of a
rapidly null Gs set given by an explicit formula.

Proof. Let A, (f), An(g), and A, (f, g) be defined as in Proposition 3.10 applied to
the rapidly Cauchy sequences (f;), (g:), and {f2, 93, f1,95,...) respectively. Then
the limits of f;(z) and g;(z) exist and agree for any x outside of three rapidly null
G sets. Combine these rapidly null G sets into a single rapidly null G5 set. O

Proposition 3.14 (ACAq). If (h;) is a sequence of functions of L'(2*) rapidly
converging to a function g € L*(2%), then

Jim (@) = g(a)

for almost all x. Furthermore, this pointwise convergence is achieved outside of a
rapidly null Gs set given by an explicit formula.

Proof. Define (f);c,, by f' = hZ""! where (h%)i<w is the given name for h;. Then

(fi*+2);c., is rapidly Cauchy and is another name for g, which we can see because

/Ifi _ < /Ifi —hi|+ / i — host| + / hisy — f7H1] < 2% 49 492

and
/\fi—gl s/|fi—hi|+/|hi—g| <9 4ot

Let A,(g) and A,(h;) be the building blocks of infinitely many rapidly null
G; sets as in Corollary 3.11, so that outside of these sets the notations g(z) and
hj(x) are well-defined as the pointwise limits of the given names for g and each h;.
Additionally, letting

Cy = U An(hj)>
>k
n>j
by Proposition 3.10, we have AU, ; An(h;)) < 277 and thus A\(Cy) < 27% and
i Ck is a rapidly null G5 set. Combine into a single test
(1) the infinitely many rapidly null G sets which result from applying Corollary
3.11 to the given names for g and each h;
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(2) the rapidly null G5 set guaranteed by Corollary 3.13, so that for  outside
of B, lim; fi(z) = g(x).
3) Nk Cr-
By (1), if « avoids this test, then h;(x) and g(z) are well-defined as the pointwise
limit of the given names of g and h;. By (2), if z avoids this test, then lim; f*(z) =
g(x). Finally, we claim that if # avoids this test, then lim; h;(z) = lim; f*(x). The
limit on the right hand side exists, so it suffices to show that lim; | f7(z)—h;(z)| = 0.
This follows by (3) because if = ¢ Cj, for some k, then for all j > k we have
(@) —hy(@)] < Y [hj(a) = by ()] < 27,
i=2j+1
O

We have the following relationship between higher randomness and measure
theory. This is surely known (and one could surely do better than Al-random) but
it is enough for our purposes.

Lemma 3.15. Suppose that f € L*(2¥), with name (f%)i<,. Suppose that R is
Al-random relative to (f%)i<.. Then

1 ,

m 1y —

NhféoNZf(R) bt
J<N

Proof. Note that the randomness of R ensures that f(RU!) is well-defined as lim; f*(RU!).
For any ¢, we can find a measurable function f. = Z;O:_OO kexa, where Ay are
measurable sets which have Borel definitions uniformly in the name (f?), and such
that | f(z) — fe(x)| < € for all z outside of a G5 set which also has a Borel definition
relative to (f?). Then the randomness of R ensures that the RU! visit each Aj, with
the right limiting frequency, and that |f(RU)) — ke| < € whenever RUI € A;. Thus
N <N f(RU) is within e of + DN f-(RV)), and the latter tends to to [, f-
as IV increases. Letting € go to zero completes the proof. (I

4. REGULARITY APPROXIMATIONS AND MEASURE APPROXIMATIONS

The following version of measurability for a set was implicit in [Yu93].

Definition 4.1. A set B is regularity-measurable if there are G5 sets A and C
such that A C B C C and ANC is rapidly null.

We bring up this definition because such a pair (A, C), which we could call a
regqularity approximation to B, would seem an obvious analog to the Baire approz-
imation to a set B defined in [ADM™20]. We can use this notion of measurability
to define the principle CD-M as follows.

Definition 4.2. Let CD-M be the principle “Every completely determined Borel set
is regularity-measurable”.

A difference between measure and category now arises. The Baire Category The-
orem holds in RCA(, so RCA( knows that the whole space is not meager. However,
WWHAKLy is needed in order to know that the whole space is not null.

Proposition 4.3. Over RCAy, “WWKLg implies CD-M.
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Proof. By Theorem 3.7, let A be an rapidly null Gs set with empty complement.
Let C' = 2¥. Then for any set B, we have A°=( C B C C, but AN C is rapidly
null because A is rapidly null. O

In the presence of WWKLy, however, regularity-measurable coincides with the
same notion of measurability given in Definition 3.8.

Proposition 4.4 (WWKLg). Let B C 2% be any set. (Formally, the membership of
B can be given by any formula in the language of second order arithmetic). Then
B is regularity-measurable if and only if it is measurable in the sense of Definition
3.8.

Proof. Suppose B is regularity-measurable. It follows that AU C = 2¥. Therefore,
if A=, A, and C = ), Cy, we have for each n that 4, UC, = 2*. Using
WWKULy, it follows that u(A, UC,) = 1, while u(A4, NC,) < 27" because ANC is
rapidly null. Define a sequence of functions f,, : 2¢ — {0,1} and open sets B,, as
follows. Given n, let s be large enough that p(D,41.¢) < 27"+ where we define

Dy s =2\ (A, s UCps).
Let f,, be the characteristic function of C,, 1 s, and let
By = (Ans1 N Cry1) UDpyas.
Then u(B,) < 27™. We have
[ fn = fllt = p(Ang1,sAAmt1t)

where s and ¢ are chosen as in the definition. Since A, 11 sAAm+1+ C By U By,
the sequence (f,) is rapidly Cauchy and f, (z) converges to xp(z) for all z outside
of N, (Ugon Br):

On the other hand, if B is measurable in the sense of Definition 3.8, then if
(fn)new is an L'-name for yp, the sets A, = {z : fu(z) < 2/3} and C,, = {z :
fn(x) > 1/3} demonstrate that B is regularity-measurable. This follows because,
letting D = A, N C,,, we have

1

1 —n
5i0) = [ 2= [ 1fu=xal <15 - xalh 2770
D D

The first step in evaluating the strength of CD-M + WWKL, is immediate.

Proposition 4.5. Over WWKLg, the statement “FEvery open subset of 2“ is mea-
surable” is equivalent to ACAq.

Proof. 1t is clear that ACA( proves the given statement. In the other direction,
given an increasing sequence of real numbers (a, ) with each a,, < 1, let U be an
open set designed so that p;(U) = sup,, a,. For example, let U be the set which
contains exactly those cylinders [p~0] such that for some n, we have .p~1 < ay,
where .p~1 denotes the rational number with binary decimal expansion given by
p~1. By WWKLg, ur(U) = pu(U). But u(U) exists as a number, thus sup,, a,
exists. O

Combining Propositions 4.3 and 4.5, we arrive at the following curiosity. Let
OSM be the statement “Every open set is regularity-measurable”. Then by Propo-
sition 4.5, we have that ACAg is equivalent to WWKLy+ OSM, while Proposition 4.3
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shows that RCAg proves WWKLgy V OSM (here V denotes a disjunction of two prin-
ciples, not a a join operator on those principles). Thus we have a diamond formed
of reasonably natural principles, though it must be admitted that OSM does not
mean much outside of WWKLy. We are not aware of any other diamond in reverse
mathematics. By a diamond here we just mean informally an incomparable pair
of principles A and B such that A 4+ B is equivalent to some principle of interest,
while A V B follows from RCAy.

We return now to our main discussion of the principle CD-M. One direction of
Proposition 4.5 can be extended to the Borel case as follows.

Proposition 4.6. Over WWKLy, CD-M implies L, .,-CA.

Proof. Given (¢, )ne. a sequence of completely determined formulas of L, ., turn
them into Borel codes by change (] to A, J to V/, and changing their leaves as
follows. If ¢,, has true at a leaf, replace it with [0"1]. If ¢, has false at a leaf,
replace it with (). Now take the union of all of these codes. The resulting code
is completely determined because each ¢, was completely determined and each
X € 2¥ belongs to at most one cylinder [0"1]. If f is a measurable characteristic
function, then f is almost surely 1 on [0"1] whenever ¢,, is true, and almost surely
0 on [0™1] whenever ¢, is false. Thus the sequence (2" f[O"l] fnew witnesses the
satisfaction of L., .,-CA; this sequence assigns 1 to the true formulas and 0 to the
false ones. O

The classical way of showing that every Borel set is measurable is to use arith-
metic transfinite recursion to define a regularity approximation to |T,| for each
o € T. We present an effectivization of the classical proof which is particularly
well-suited to our subsequent analysis.

Definition 4.7. Let T be a code for a Borel set. A measure decomposition for T
is a collection (f, : 0 € T), where each f, € L*(2¥), such that

(1) If o is a leaf, then f, is the characteristic function of |Ty|.

(2) If o is a union, then f, = sup,, fon-

(8) If o is an intersection, then f, = inf, fo,.

All three equalities above refer to equality in the sense of the metric space L!(2%).
For example, the equation f, = sup,, fon is shorthand for

lim (Sup fon> = fcr

N—oo \ <N

and similarly for the other equation. In all cases, n ranges only over those numbers
for which on € T.

Proposition 4.8 (ACAg). Suppose T is a code for a completely determined Borel
set. If T has a measure decomposition, then |T'| is measurable.

Proof. We need to show that fy is a.e. equal to the characteristic function of |T7|.
This is proved by arithmetic transfinite induction on 7'.

Observe that if we were willing to use X3 transfinite induction and %1-AC, the
proof which inducts on the following statement would be very short: there is a
rapidly null Gs such that for all X outside of it, f,(X) =1 if and only if X € |T,|.
Since we want to get away with arithmetic transfinite induction only, we need to
identify the rapidly null G in advance, then fix some X outside it, and then prove
fo(X) is correct by transfinite induction on 7.
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We claim the following collection of rapidly null G sets exists:
(1) For all o, a rapidly null G5 such that for all = outside of it, the name of f
converges at x.
(2) For all leaf o, a rapidly null G5 set such that on its complement, f, is the
characteristic function of |7, |
(3) For all union o, a rapidly null G5 set such that for all z in its complement,
fcr(x) = Sup, fdn(x)
(4) For all intersection o, same as the above except using inf,, fyr,.
The sets in (1) are obtained by uniform application of Corollary 3.11 to the given
names for the functions f,. The sets in (2) are obtained by uniform application
of Corollary 3.13 to f, and a standard name for the characteristic function of the
clopen set |T,|. To obtain (3), use the fact that

lim (Sup fan) = fa»

N—oo \ p<N

define hy = sup, _n fon, and find a sequence N; such that (hn,)ic. is rapidly
convergent to f,. Then apply Proposition 3.14 to (hn;, )icw together with the given
name for f,. Although we have passed to a subsequence, because hy () < hyy1(2)
for all x, it follows that hy(x) converges if and only if hp,(z) converges. (It will
happen in our situation that hy(x) converges for all z, though we do not need this.)
The procedure for (4) is similar.

Let A be a rapidly null G5 set which contains all the bad-behavior sets above.
Fix X ¢ A. We claim that the map which sends o to f,(X) is an evaluation map
for X in T. That is, we claim f,(X) = 1 if and only if X € |T,|. The claim is
proved by arithmetic transfinite induction on 7. Observe that A contains all the
points at which the proposed evaluation map fails to be right at the leaves or fails
to satisfy the logic of the tree.

In particular, fp(X) =1 if and only if X € |T]. O

Uniformly arithmetic in a sequence (foy)new, we may produce the functions
sup,, fon and inf, f,,. Therefore, ATR( suffices to create measure decompositions
for all Borel sets. However, ACA is enough to guarantee their uniqueness.

Proposition 4.9 (ACAg). Suppose that T is a Borel code and {fs)ser and (go)oeT
are two measure decompositions for T. Then for allo € T, f, = g, as L' functions.

Proof. By arithmetic transfinite induction. If for all n, fy, = gon, then for all NV,
SUp,,«n fon = SUpP, <y gon- Therefore, these sequences have the same limit in the
sense of L. O

Although we will show in the next section that WWKLy+ CD-M is strictly weaker
than ATRg, the existence of measure decompositions is still necessary for WWKLg +
CD-M to hold. Therefore, any model of WWKLy + CD-M 4+ —=ATR( will need some
other way of producing measure decompositions.

Proposition 4.10 (ACAg). If CD-M holds, then every completely determined Borel
set has a measure decomposition.

Proof. For any Borel code S, define an operation S[n] as follows. Whenever a leaf
of S is labeled by the clopen set [po] U --- U [px], replace it with the clopen set
[0"1po] U --- U [0™1pg]. This has the effect of shrinking the set coded by S and
relocating it to live completely inside the cone [0™1].
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Let h : w — T be a computable surjection. If T" is completely determined, so is
T, where
T = Thwn]
new
Colloquially, T has been formed by taking each subtree T, of T and giving it its
own dedicated part of the Cantor space. Now, if T is measurable via the function
f € L, then the functions

fo(X) = f(O™BhT ()17 X)

are a measure decomposition for 7. ([

5. RESULTS

In this section we construct an w-model M which satisfies CD-M but not ATRg.
Let R be aIl}-random. Let M be the w-model whose second-order part is |J, ., AL(D,.., RM),
where RI*] denotes the kth column of R.
Since the strings of 2<“ are in one-to-one correspondence with w, we can assume
such a correspondence is fixed and abuse notation to also let GIP! denote a column
of G whenever p € 2<% and G € 2%.

Proposition 5.1. The model M does not satisfy ATRy.

Proof. Let a* be a computable pseudo-ordinal. Then a* € M. We claim that a*
has neither a descending sequence, nor a jump hierarchy, in M. If Al(Ry) had one,
where Ry = @,,_; RI¥ then by Theorem 2.1, wfo = w{¥. Thus there is an ordinal

b € O such that H, 50 computes either a jump hierarchy on or a descending sequence
in a*. But recognizing a jump hierarchy or a descending sequence is arithmetic. So

“Hzf( computes a jump hierarchy or descending sequence for a*”

is a 22+O(1) statement, and it has measure either 0 or 1 because it describes a
property of the tail of X. Because Ry is sufficiently random, and satisfies the
statement, the set has measure 1. But then any b + O(1)-generic also satisfies the
statement. This is a contradiction because there are b + O(1)-generics in HY P,
but a* has no hyperarithmetic descending sequence nor any hyperarithmetic jump
hierarchy. [

Proposition 5.2. The model M satisfies L, ,-CA. Furthermore, whenever Ry €
M and (¢;) € AL (Ry), if (¢;) is completely determined in M, then it is completely
determined in Al(Rp).

Proof. Suppose that (¢;) € AL(@,_, RY) is a sequence of formulas of Ly, .-CA
which is completely determined in M. Since L, ,,-CA is a theory of hyperarithmetic
analysis, it suffices to show that the sequence is determined in Al(Rp), where
Ry = @, R'". Fixing j, there is an m > k such that A}(@D,_,, R!") contains an
evaluation map for ¢;. Let Ry = @, ;. RU. By Van Lambalgen’s Theorem for

ITi-randoms, Ry and R; are relatively ITi-random. Since wa@Rl = wfk , there is

some a € O such that this evaluation map is computable from HZFo®E1 Then
C; = {X : H®X computes an evaluation map for ¢;}

is a A{(Rp) set which contains the II} (Ry)-random R;. Therefore, C; has measure
1, so any sufficiently random element computes an evaluation map for ¢;. Here,
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sufficiently random just means more random (relative to Rp) than the descriptive
complexity of Cj. So there are elements of Aj(Ry) that are sufficiently random.
Thus ¢; is determined in A}(Rp). O

To show that M models CD-M, the following classical fact will be useful. It says
roughly that if you approximate a bounded function f by using its average values
on smaller and smaller partitions of the domain, the resulting sequence converges
to f in the L' sense.

Lemma 5.3 (WWKLy). If f € LY(2¥) is bounded and h; = Epezj(Zi f[p] F)Xip»
then h; — f in the L' norm.

Proof. Given ¢, use Corollary 3.12 to find a closed set B such that the restriction
of f to B is continuous, and p(2¥) — B < ¢/M, where M is a bound on f. Let i be
large enough that on B, if x [ i =y [ ¢, then |f(z) — f(y)| < e. Then for all strings
p € 2¢ and all 2 € [p],

Iha(e) — F@) = 12 . )~ Fao)
=12 [l )+ @ [ 5 ) —2" [, f(zo)l (f(zo) is a constant.)
<2 o = F@o) 20 [y Fl+ 120 [ £ o)
<2 Jynpe 22 Jynp M)

[ 11- Z/ hi— f)

Therefore,

pE2*

<Z/ Uz + 2 Jpns M)
pEe2t

<D Upnme T2 fyps M
pe2t

:fBE—&—Qwi\BMSE—i—Qg.
[l

Lemma 5.4. Suppose that f € L'(2¥), with name (f%);<,. Suppose that R is
Al-random relative to (f%);<.. Define a sequence of functions g* by

§(X) = Jim = 37 F(X 1) RY)

N—o0 4
J<N

Then the functions are well-defined and g* — f in the L' norm.

Proof. By 2'-many applications of Lemma 3.15 to the functions fp( )= f(p"R),

and since 2lf f = [y fp, we have ¢'(X) = > pe2i (2 fp] . Then ¢* — f by
Lemma 5.3. O

Theorem 5.5. Over WWKLg, CD-M is strictly weaker than ATRqy. In particular,
M satisfies WWKLg + CD-M but not ATRg.

Proof. Suppose that we are given T', a completely determined Borel code. To sim-
plify notation, we assume that T € Al; the result for arbitrary T € M follows
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by relativization. Let Ry = RI[%. Then abusing the column notation further, con-
sider Ry as being made out of infinitely many distinct and computably identifiable
columns, one column for each pair (o,j), where 0 € w<“,j € w, and let Rlod]
denote the column allocated to that pair. Then letting

U:={(p,0,§) : p" RV € |T,|}

we have U € Al(R) by Proposition 5.2. By the same reasoning, we also have that
Uy :={(p,4) : (0,p,7) € U} satisfies U, € AL(RI™)), where R = D, Rl

Therefore, in A{(Rp) we can also find the array of functions (fI),eric. defined
as follows.

FE(X) = Timsup - 37 Up(X 14, j)

N—o0 <N

Then define f, = limsup, fi. Since the functions X +— U, (X | i,7) are continuous
and bounded above by 1, f, € L'(2*) by the monotone convergence theorem. Of
course, the intention is to show that all limsups above can be replaced by limits a.e.,
and that f, represents |T,| as a measurable set. We prove that (f,) is a measure
decomposition by arithmetic transfinite induction within M.

If o is a leaf then the sequence of functions f! is eventually constant and equal
to the characteristic function of the clopen set coded by T,, as desired.

So to complete the proof that (f,),er is measure decomposition, it suffices to
show that M models the following statement for each non-leaf o € T

“If for all n, (fonr)rer,, is a measure decomposition, then (fy;) e, is a measure
decomposition.” That is, assuming M models the hypothesis, we need to show that
M models:

(1) If o is a union, then f, = sup,, fon
(2) If o is an intersection, then f, = inf,, fon

We show the union case; the intersection case is completely symmetric. By Propo-
sition 4.8, for each n, there is a rapidly null Gs set such that on its complement,
fon is the characteristic function of |7,,|. Inspecting the proof of Proposition 4.8,
we see that the rapidly null G5 sets guaranteed there have a uniform AY definition
relative to the data (fonr : 7 € Tyn,n € w). Let A denote the rapidly null Gs set
obtained by combining these infinitely many tests into a single test. Define

R([)<0] _ @ Rgon'r].

TeTan
new

Since

A<r <fan‘r 17 €Ton,n € W> <r @ Uynr € Ai(R[<U])
TE€Ton
new
and Rl° is Al-random relative to R[<?] each column R([)U’j]
for each p € 2<% and each 7 and n, we have

avoids A. Therefore,

p R e T, <= fou(p R =1.
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Therefore,
(p,j) € Uy <= pRY7 e |T,|
— Elnp”RgT’j] € |Ton|
e Infon(p" R =1

&= Sup fon (p’“Rg”j ]) =1.

Here sup,, f,» has a canonical L' name arithmetic in (f,, : n € w), and the last
bi-implication is justified by Proposition 3.14, since p"Rg”j ] also avoids the rapidly

null G5 guaranteed there. Thus by Lemma 5.4,

o 1 ~ plod]
Jm Z sup fon(p™Ry™)
J<N

exists for all o, and (f%);c., is actually a name for sup,, f,,. Therefore, by Propo-
sition 3.14 and Corollary 3.13, for almost all z we have f,(z) = lim; fi(z) =
sup,, fon(x). Theorem 3.9 then implies that f, = sup,, fyn, which is what we
wanted to prove. O

6. w-MODELS OF CD-M ARE CLOSED UNDER A}-RANDOMS

In this section we show that any w-model M of CD-M must be closed under A}-
randoms, in the sense that for every Z € M, there is an R € M that is Al-random
relative to Z. We first review the machinery of decorating trees from [ADM™20].
All results summarized here relativize and they will be used in a relativized form,
but we state them in unrelativized form to reduce clutter.

The purpose of the operation Decorate is to take a code for a Borel set which
may not be completely determined, and force it to become determined for some
“small” set of inputs, while not changing its membership facts for other inputs. In
our case “small” will mean measure 0. Roughly speaking, we are going to make
a code T and add decorations to ensure that all non Ai-randoms are determined
in T. We will also make sure any measure decomposition is complicated enough
to compute a Al-random. That way, if there are no Ai-randoms then the tree is
completely determined, at which point the existence of a computationally powerful
measure decomposition leads to a contradiction.

Definition 6.1 ([ADM"20]). A nice decoration generator is a partial computable
function which maps any b € O* to alternating, b-ranked trees (Py, Ny), where each
Py, and Ny have an intersection or a leaf at their root.

For example (and this is what we will use), there is a finite number & such that
the following almost defines a nice decoration generator.

Pyyr = {X : X is not MLR™* but for all ¢ <, b, X is MLRT} N {X : X <10 Hy}
Nyir = {X : X is not MLRM" but for all ¢ <, b, X is MLRA} N {X : X >, Hy}
All that remains is to define P, and N, when b is within & successors of a limit

ordinal; in that case we set both P, and N, to be b-ranked alternating codes for
the empty set.
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The operation Decorate is defined below using effective transfinite recursion
(with parameter <, which is computable from ('), and therefore is well-defined
on a-ranked trees T for all a € O*7T.

Definition 6.2 ([ADM™20]). The operation Decorate is defined as follows. The
inputs are an a-ranked labeled tree T and a nice decoration generator h.

Decorate(T,h) = {A} U U (2n)” Decorate(T',y, h)
(n)yeT

U U (2b + 1)” Decorate(Qp, h)
b<.pr(N)

where Qpy =Py if XisalJ inT, and Qy, = NS if Nisa () inT.

The rank and label of A in Decorate(T, h) are defined to coincide with the rank
and label of X\ inT. The ranks and labels of the other nodes in Decorate(T, h) are
inherited from Decorate(T(yy, h) or Decorate(Qs, h) as appropriate.

If T is a-ranked, so is Decorate(T, h). Similarly, if T and each P, and N, are
alternating, then Decorate(T, h) will also be alternating. (Note that in this case,
N{ has a union at its root).

Lemma 6.3 ([ADM120]). Let h be a nice decoration generator. Suppose b € O,
and suppose that X & |Py| U |Ny| for any d <. b. Then for any b-ranked tree T,
X € |Decorate(T, h)| if and only if X € |T).

Lemma 6.4 ([ADM7'20]). Let a € O* and b € O with b <, a. Let T be an
alternating, a-ranked tree and let h be a mice decoration generator. Suppose X €
‘Pb‘ U |Nb| Then

(1) X has a unique evaluation map in Decorate(T, h).

(2) This evaluation map is H;i%T(l)—computable,

Theorem 6.5. Suppose that M is an w-model of WWKLy + CD-M. Then for any
Z € M, there is an R € M such that R is A}-random relative to Z.

Proof. If M is a 8-model, then M is already closed under Al-randoms in the sense
described above, because the statement IR(R is Al(Z)-random) is a true %}(Z)
statement, and any witness to its truth computes such an R.

On the other hand, if M is not a S-model, then there is a tree S € M such
that M believes S to be well-founded, but in fact S is ill-founded. Without loss of
generality, assume that Z >7 S; otherwise we end up with a Al-random relative to
Z®S. There is a Z-computable procedure which, given any truly well-founded tree
as input, produces an element of @ which bounds its rank. Apply this procedure
to S to produce a pseudo-ordinal a* € (O*)Z. Then M thinks that a* is an ordinal.
Let T be any Z-computable, alternating, (a* 4+ 1)-ranked tree such that each level-
one subtree T}, is a*-ranked. We can assume 7" has a union at the root, though the
symmetric choice would also work. Let i be the nice decoration generator which
produces codes for PbZ and NbZ as follows (this is just the relativized form of what
was defined above).

P2, ={X : X is not MLR™?  but for all ¢ <Z b, X is MLR"E} N {X : X <jox HZ}
N7, = {X : X is not MLR®?  but for all ¢ <Z b, X is MLR#} 0 {X : X >0 HZ}
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As above, we also define PZ and N7 to be b-ranked codes for the empty set in case
b is within k successors of a limit ordinal. Now consider the tree Decorate? (T h).
Is it completely determined?

Suppose it is not completely determined; let X be an element that does not
have an evaluation map. Since CD-M + WWKLg implies L, ,,-CA, every element
of HYP(X @ Z) is in M. So by Lemma 6.4, for any b € 0%, X ¢ |PZ| U |N{Z|
(if it were in this set, it would have a HY P(X @ Z) evaluation map). But this
means that X is Al-random relative to Z, since each non-random belongs to some
|PZIUINZ|.

So suppose that Decorate? (T, h) is completely determined. Then by CD-M, it
has a measure decomposition. We claim that any element R that is 1-random rel-
ative to the measure decomposition is in fact Af-random relative to Z. It suffices
to show that the measure decomposition computes HZ for all b € OZ. Fix b € 0%
with b <Z a* and observe that Decorate? (P,,, h) appears as a level-one subtree
of Decorate? (T,h). Thus, by examining the definition of Py, which has an in-
tersection at the root and {X : X <jex HbZ } as a level-one subtree, we see that
Decorate? ({X : X <jex HZ}, h) appears as a level-two subtree of Decorate” (T, h).
(Here of course, {X : X <jox H{Z} is represented using an approximately b-ranked
formula of L, ,, but this formula contributes computational, not topological, com-
plexity.) Therefore, there is an L' function f included in the measure decomposition
which is equal to the characteristic function of Decorate? ({X : X <iox HZ},h) al-
most everywhere. We claim that f f=H bZ , where here we regard H, bZ as a number
in [0, 1] given by its binary expansion. Using WWKLy, it suffices to provide another
L' function ¢ which has fg= HbZ and such that g is equal to the characteris-
tic function of Decorate? ({X : X <je HZ},h) almost everywhere. Let g be the
canonical measurable characteristic function of the open set J,_ HZ [p]. Then by

Lemma 6.3, for any X that is M LR | since X ¢ |PZ|U|NZ| for any d <Z b+ k,
we have X € Decoratez({X : X <lex HZ},h) if and only if X <o HZ, which is
true if and only if g(X) = 1. This completes the proof. |
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