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Abstract. We define the notion of a completely determined Borel code in reverse
mathematics, and consider the principle CD-PB, which states that every completely deter-
mined Borel set has the property of Baire. We show that this principle is strictly weaker
than ATRp. Any w-model of CD-PB must be closed under hyperarithmetic reduction, but
CD-PB is not a theory of hyperarithmetic analysis. We show that whenever M C 2% is the
second-order part of an w-model of CD-PB, then for every Z € M, there is a G € M such
that G is A%—generic relative to Z.

81. Introduction. The program of reverse mathematics aims to quantify
the strength of the various axioms and theorems of ordinary mathematics by
assuming only a weak base theory (RCAg) and then determining which axioms
and theorems can prove which others over that weak base. Five robust systems
emerged, (in order of strength, RCAg, WKLo, ACAg, ATRg, IT1-CAg) with most
theorems of ordinary mathematics being equivalent to one of these five (earning
this group the moniker “the big five”). The standard reference is [15]. In recent
decades, most work in reverse mathematics has focused on the theorems that do
not belong to the big five but are in the vicinity of ACAy. Here we discuss two
principles which are outside of the big five and located in the general vicinity of
ATRg: the property of Baire for completely determined Borel sets (CD-PB) and
the Borel dual Ramsey theorem for 3 partitions and £ colors (BoreI—DRT?). Both
principles involve Borel sets.

Our motivation is to make it possible to give a meaningful reverse mathematics
analysis of theorems whose statements involve Borel sets. The way that Borel
sets are usually defined in reverse mathematics forces many theorems that even
mention a Borel set to imply ATRp, in an unsatisfactory sense made precise in
[5]. Here we propose another definition for a Borel set in reverse mathematics,
distinguished from the original by the terminology completely determined Borel
set, and to put bounds on the strength of the statement

CD-PB : “Every completely determined Borel set has the property of Baire”

This statement should be compared with the usual “Every Borel set has the
property of Baire”, which [5] showed is equivalent to ATRy for aforementioned
empty reasons. In contrast, working with CD-PB requires working with hyper-
arithmetic generics, giving this theorem more thematic content. While we do
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Ficure 1. CD-PB, ATRy, and some theories of hyperarithmetic
analysis. The new results are those concerning CD-PB. A double
arrow indicates a strict implication.

not claim that CD-PB is the “right” formalization of the principle that Borel
sets have the Baire property, it is a step in that direction.

We show that over RCA(, CD-PB is implied by ATRy and implies L, .-CA.
Our first main theorems say that both implications are strict.

THEOREM 1.1. There is an w-model of CD-PB in which ATRq fails.

THEOREM 1.2. There is an w-model of L, .-CA in which CD-PB fails. In
fact, HY P is such an w-model.

This establishes that CD-PB is located in the general vicinity of the theories of
hyperarithmetic analysis, a mostly linearly ordered collection of logical principles
which are strong enough to support hyperarithmetic reduction, but too weak to
imply the existence of jump hierarchies. With the exception of Jullien’s indecom-
posability theorem [10], no theorems of ordinary mathematics are known to exist
in this space. The only known statement of hyperarithmetic analysis that is not
linearly ordered with the others is the arithmetic Bolzano-Weierstrass theorem
(see [6], [3]). Now, CD-PB is not a theory of hyperarithmetic analysis because it
does not hold in HY P. However these theories of hyperarithmetic analysis are
the closest principles to CD-PB that have already been studied.

To elaborate on the factors preventing to CD-PB from being a theory of hy-
perarithmetic analysis, we prove the following generalization of Theorem 1.2
above, establishing that hyperarithmetic generics must appear in any w-model
of CD-PB.

THEOREM 1.3. If M is an w-model of CD-PB, then for any Z € M, there is
a G € M that is A} (Z)-generic.

As an application, we use CD-PB to analyze the theorem Borel—DRT?, whose
statement contains no concept of mathematical logic apart from that of Borel
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sets. (The statement of this theorem can be found in Section 8.) We show that,
under appropriate formalization, BoreI—DRT? is strictly weaker than ATRgy and
shares some properties with the theories of hyperarithmetic analysis. It is left
open whether BoreI—DRT? is a statement of hyperarithmetic analysis.

THEOREM 1.4. For any finite £ > 2, the principle BoreI-DRTg’ is strictly im-
plied by ATRy. Any w-model of BoreI—DRTi’ is closed under hyperarithmetic re-
duction.

The first section gives the preliminaries. In Section 2 we give the definition of a
completely determined Borel code and prove its basic properties. In Section 3 we
construct an w-model to separate CD-PB from ATRy. In Section 4 we develop
the machinery of decorating trees which will be used in Sections 5 and 6. In
Section 5, we prove that CD-PB does not hold in HY P. In Section 6, we prove
Theorem 1.3. This is a strictly stronger theorem than the one proved in Section
5, but also a bit longer to prove, so Section 5 could be regarded as a warm-up.
In Section 7 we give an application to the Borel dual Ramsey theorem. Section
8 contains open questions.

The authors would like to thank Julia Knight and Jindra Zapletal for helpful
discussions on this topic, and the anonymous referee for many suggestions which
have made the arguments clearer and more accessible.

§2. Preliminaries.

2.1. Notation, Borel sets and Borel codes. We typically denote elements
of w<¥ by 0,7 and elements of 2<% by p,q. We write ¢ < 7 to indicate that
o is an initial segment of 7, with < if ¢ # 7. We may also use this notation
to indicate when a finite string is an initial segment of an infinite string. For
p € 2<% the notation [p] refers to the set {X € 2 : p < X'}. The empty string
is denoted by A. A string with a single component of value n € w is denoted by
(n). String concatenation is denoted by o~ 7. Usually we write 0" n instead of
the more technically correct but uglier o~ (n).

If U is a set of strings (for example, a tree, or a coded open subset of 2¢), and
o is any string, we write c~U to mean {o"7:7 € U}. If T is a tree and o € T,
we write T, to mean {7 : 077 € T}.

The Borel subsets of a topological space are the smallest collection which
contains the open sets and is closed under complements and countable unions
(and thus countable intersections).

A Borel code is a well-founded tree T C w<% whose leaves are labeled by basic
open sets or their complements, and whose inner nodes are labeled by U or N.
The Borel set associated to a Borel code is defined by induction, interpreting
the labels in the obvious way. Any Borel set can be represented this way, by
applying DeMorgan’s laws to push any complementation out to the leaves.

We use standard recursion-theoretic notation. The eth Turing functional is
denoted ®.. A pair of natural numbers (n,m) is coded as a single natural number
(n,m) via a canonical computable bijection between N and N x N. Although
this notation (n,m) could also refer to a string with two elements, context will
make it clear which type is meant.
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2.2. Reverse mathematics. We assume the reader is familiar with the pro-
gram of reverse mathematics. The standard reference on this subject is [15]. Here
we just recall that the principle of arithmetic transfinite recursion is formulated
as follows. If X € 2“ codes a linear order on some subset of N, let <x denote
that linear order and (abusing notation) let X also denote the domain of the lin-
ear order. Assuming there is a linear order X in the context, given Y € 2% and
a € X, we let Y denote {(n,b) € Y : b <x a}. Given an arithmetic predicate
®(n, Z), we define the predicate Hy(X,Y") as follows:

Hy(X,Y) = X is a linear order and Y = {(n,a) : a € X and ¢(n,Y*)}.

The principle ATRy is a scheme ranging over arithmetic formulas ¢, which states
that for each such ¢, if X is a well-order, then there is a ¥ such that Hy(X,Y).
Using ACAq, one can show that such Y is unique. For details, see [15, Section
V.2].

In the special case where ¢(n, Z) is the jump operator, that is ¢(n,Z) =n €
Z', then any Y satisfying Hy(X,Y) is called a jump hierarchy on X.

The principle of effective transfinite recursion is defined almost the same as
ATRg, but using A formulas instead of arithmetical formulas. In [5] it is shown
that effective transfinite recursion also goes through in ACA,.

Both ATRy and effective transfinite recursion are used to define objects by
recursion along a well-order X. If we only want to use induction to werify
some arithmetic property of a family of objects indexed by X, the principle
of arithmetic transfinite induction is used and this principle also holds in ACAq
([15, Lemma V.2.1]).

In reverse mathematics, the role of an ordinal is played simply by a well-
founded linear order. For certain of our constructions it is convenient to have
a more structured well-order for which the operation of finding a successor is
effective. For that reason we also use the terminology of Kleene’s O, which is
briefly reviewed in the next section.

2.3. Ordinal notations and pseudo-ordinals. We assume the reader is
familiar with ordinal notations and pseudo-ordinals. A standard reference is
[14]. Here we give just a brief summary of the concepts and techniques that we
use. Recall that Kleene’s O, denoted O, is a ITi-complete subset of w consisting
of notations for all the computable ordinals, where 1 denotes the ordinal 0,
2% denotes the successor of the ordinal denoted by a, and 3 - 5¢ denotes the
limit of the ordinals denoted by ®.(n), provided that @, is total and for all n,
®.(n) <. Pc(n+1) (where <, is the transitive closure of the relation defined by
1<,zifx#1, z<,2% and ®.(n) <, 3-5°). The notation < refers to the
relation <, restricted to O.

To avoid excessive repetition of the phrase “denoted by”, henceforth we will
conflate ordinals with their notations. A given ordinal may have many notations,
but for each such notation a, {b € O : b <o a} is linearly ordered by <p, so
canonical names for the ordinals below a are implied by the choice of a. We will
also write a+ k for the kth successor of a (instead of the technically accurate but
more cumbersome tower of exponentials), and a — k for its kth predecessor when
this exists. Although a is technically an element of w, it would never make sense
to add or subtract an ordinal using the usual addition on the natural numbers,
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so this should not create confusion. Also, sometimes we will take a fixed but
unspecified number of successors of a, and the result is denoted a + O(1).

The set {b € O : b <p a} is c.e. uniformly in a, because the relation <, is a
c.e. relation. Throughout, we let p denote the computable function such that
for each a € w, we have W) = {b € w: b <, a}.

The definition of O also relativizes to any oracle X, producing a II}(X)-
complete set OX with the same properties as above.

The basic tool for working with ordinal notations is effective transfinite recur-
sion, which suffices to define a large swath of important constructions involving
ordinal notations. These constructions also relativize (in reverse mathematics
this corresponds to allowing a real parameter appear in the formula ¢). Here
are two examples which are used in this paper. (Ranked formulas of L, ., are
defined in the next subsections).

PROPOSITION 2.1. Given an oracle X, an ordinal a € OX, and a number
T € w, there is an a-ranked formula of L, . which holds exactly if x € H.X,
where H.X denotes the unique jump hierarchy (relative to X ) on the well-order

X
Wp(a)'

PRrOOF. The existence of a formula of L, ., defining membership in H, ;IX fol-
lows directly from effective transfinite recursion applied to the definition of H.X.
The fact that the formula can be a-ranked uses the normal form theorem for
simplifying expressions involving bounded quantifiers. These simplifications can
be carried out effectively. -

PROPOSITION 2.2. Given an X-computable linear order L, there is a number
a such that L is well-founded if and only if a € OX. Furthermore, if L is
ill-founded, any descending sequence in W;ga) uniformly computes a descending
sequence in L.

PRrROOF. The first statement above is a special case of [14, Lemma 4.3]. The
second statement is true for the construction in [14], but not explicitly stated
there. So for the reader’s convenience here is an alternative construction which
establishes both parts of the proposition.

Let L’ denote the linear order with order type 1 + L + 1. Without loss of
generality, the least element of L’ is 0 and the greatest element of L’ is 1. Define
a function e : L' — w as follows. Let e(0) = 1 (the latter being the code for
ordinal 0). For k € L' and n € w, let h(k,n) denote the </ -greatest element
among {j < n:j <p k}. Then for k € L' with k # 0, define e(k) by effective
transfinite recursion as follows.

Ny (n) = n (i.e. the nth successor of 0) if h(k,n) =0
e(k) 3. 5eh(kn) 4 o otherwise.

Then let a = e(1). It is routine to show that e : (L, <) — (W;((a), <) is order-
preserving. Also, the order type of Wp)((a) isw- (14 L), with e providing a selector
for each w-chain in W;((a). If L is well-founded, induction along L shows that

a € OX. On the other hand, e and its inverse (the inverse being applied to the
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w-chains of W;((a)) provide an effective correspondence between any descending

sequences in L and in W;((a). -

Kleene’s O also has a X} superset O, defined as the intersection of all X €
HYP suchthat 1€ X, ae X=2%¢ X, and

Vn[®.(n) € X and ®.(n) <, ®(n+1)]=3-5°€ X.

Observe also that O is contained in O* (the definition of O is the same, except
that to get O we quantify over all X rather than just those in HY P). Then, since
O* is X, it must be a proper extension of O, and thus there must be elements
in a € O*\ O. Such elements are called pseudo-ordinals. For all such a, W)
is an ill-founded linear ordering without hyperarithmetic descending sequences,
and hence must be isomorphic to w§® + w$* - Q + 3 for some computable ordinal
B (see [8, Theorem 1.8]). In particular, for every pseudo-ordinal a and every
actual ordinal 8 < w§*, there exists some b <, a which denotes 3.

We will frequently use the following facts about pseudo-ordinals: any function
on O defined by effective transfinite recursion with HY P parameters is also
defined on all of O*, and any arithmetic properties of the resulting objects also
hold for all of O*, provided those properties are proved by induction. These
facts follow from the more general [8, Corollary 1.6], but they can also be easily
seen in our reverse mathematics context, using the fact that effective transfinite
recursion and arithmetic transfinite induction hold in HY P, but HY P believes
all pseudo-ordinals are ordinals.

2.4. Alternating and ranked trees. The following definition of a ranking
for a tree is looser than given by some authors. We only require that the notations
decrease, rather than the strong requirement that p(c) = sup,(p(c”™n) + 1).
Additionally, it is technically convenient for us to assume that leaves have the
smallest possible rank, but nothing serious hinges on this.

DEFINITION 2.3. IfT C w<% is any tree, and p : T — O*, we say that p ranks
T if

1. for all o and n such that c”™n € T, we have p(c™n) <. p(o), and

2. for each leaf o € T, p(o) = 1.

If T is ranked by p and p(A) = a, we say that T is a-ranked by p.

If T is a ranked tree and the name of the ranking function is not explicitly
given, then its name is pp.

Trees appear for us in two contexts: as codes for formulas of L,,, ., and codes
for Borel sets. In both cases, interior nodes are labeled with one of {N,U}. The
nicest codes alternate these.

DEFINITION 2.4. If T C w<¥ is a tree with a labeling function ¢ then we say
(T, 0) alternates if for every o™n € T, we have {(c) # £(c"n).

The main point about alternating trees is that it is always safe to assume
that we have them. If we start with a labeled, a-ranked tree, we can effectively
transform it into an alternating a-ranked tree, with no effect on the logic of the
tree (assuming that whatever model we are working in does not contain any
paths, if the tree is truly ill-founded.)



THE DETERMINED PROPERTY OF BAIRE IN REVERSE MATH 7

One small technical detail about this effective transformation will be used
later, so we give the transformation explicitly. The definition is by effective
transfinite recursion on the rank of the tree. Given an a-ranked tree T with a U
at the root, define

Alternate(T) = {A} U U (ny)" Alternate(T,),
occA(T)

where A(T) is the collection of all ¢ € T such that o is not a U, but each
T < o is a U, and where ¢ — n, is a computable injection from w<¥ to w;
define the operation analogously when 7" has a N at the root, and of course the
operation does nothing to a leaf. We see that this operation is just rearranging
some subtrees by breaking them apart and reattaching them to a higher-ranking
parent than their original attachment. The rank of any node in Alternate(T) is
inherited from its rank in the original tree. Observe that every level-one subtree
of the alternated tree (that is, every subtree of the form Alternate(T),, ) is the
alternating version of a subtree of a single level-one subtree (namely T, (o)) of
the original tree. In other words, the process of making a tree alternate may
break apart level-one subtrees, but never mixes them together.

2.5. Borel sets in reverse mathematics. In reverse mathematics, open
subsets of 2¥ are represented by sets of strings p € 2<%. If U is such a code, we
will abuse notation and write X € U to mean that for some p € U, p < X. This
is in addition to also sometimes speaking of the strings p € U. Context will tell
which usage is meant.

For arbitrary Borel sets, we will make a more careful distinction between code
and object. We restrict attention to Borel subsets of 2*. A clopen subset C
of 2% is represented by an element of w which canonically codes a finite subset
F C 2<%, As above, for X € 2%, we say X € C if and only if p < X for some
p € F. A code for C as a clopen set gives more information about C' than an
open code for the same set, because the number of elements of F' is computable
from the code. Effectively in a standard code for a clopen set, one can find a
standard code for its complement.

We take the following as the definition of a (labeled) Borel code in reverse
mathematics.

DEFINITION 2.5. A labeled Borel code is a well-founded tree T C w<¥, to-
gether with a function ¢ whose domain is T, such that if o is an interior node,

L(o) is either U or N, and if o is a leaf, £(0) is a standard code for a clopen
subset of 2¢.

We call this a labeled Borel code instead of a Borel code, because we have
added a labeling function to the original definition to improve readability.! If

I The original definition of a Borel code in reverse mathematics [15] is a well-founded tree T
such that for exactly one m € w, (m) € T.

Some conventions are then adopted: if (m) € T is a leaf, then T represents a clopen set
coded by m according to a standard computable look-up; if (m) is not a leaf, then T represents
a union or intersection according to the parity of m, and the sets to be thus combined are
those coded by the subtrees T, = {(n)"c : (m,n)"c € T}. Classically, one can translate
easily between this definition and the definition of Borel code given above, but one direction
of the translation requires ACAg because one cannot effectively determine when a node is a
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£(o) = U we may simply say “o is a union node”, and similarly for N. We will
also usually suppress mention of £, in an abuse of notation.

If T is a labeled Borel code and X € 2“, the existence of an evaluation map
is used to determine whether X is in the set coded by T

DEFINITION 2.6. If T is a labeled Borel code and X € 2¥, an evaluation map
for X € T is a function f : T — {0,1} such that

o Ifo is aleaf, f(o) =1 if and only if X is in the clopen set coded by £(c).

e If o is a union node, f(o) =1 if and only if f(oc"n) =1 for some n € w.

e If o is an intersection node, f(c) = 1 if and only if f(oc™n) = 1 for all
necw.

We say that X is in the set coded by T, denoted X € |T|, if there is an evaluation
map f for X in T such that f(A) = 1.

Note that X € |T| is a 2] statement. Because evaluation maps are naturally
constructed by arithmetic transfinite recursion, ATR proves that if 7" is a Borel
code and X € 2% there is an evaluation map f for X in 7. Furthermore, ACAg
proves that if an evaluation map exists, then it is unique. For detailed proofs,
see [15, Chapter V.3].

Because we are considering these definitions in the context of reverse mathe-
matics, there will sometimes be an ill-founded T which a model thinks is well-
founded. In these cases, the statement X € |T'| is meaningful inside the model,
or in the context of a proof inside second order arithmetic, but is not mean-
ingful outside a model. However, the criteria defining what it means to be an
evaluation map are absolute, so we can and will construct evaluation maps on
ill-founded but otherwise coherent labeled Borel codes. If T is ill-founded, we
will never use the notation |T| outside of a model. But if T" is well-founded, then
every X has a unique evaluation map in 7. In that case we give the notation
“|T|” the obvious meaning of

{X : the unique evaluation map f for X in T satisfies f(A) = 1}

when we refer to it outside the context of a model.

Operations on Borel sets are carried out easily. Observe that the operation
which corresponds to complementation on a labeled Borel code is primitive re-
cursive: just swap all the U and N labels, and replace every clopen leaf label with
its complementary label.

DEFINITION 2.7. If (T,{) is a labeled Borel code, let (T, £°) denote the labeled
Borel code whose tree is the same, and whose labeling (¢ is complementary to £
as described above.

Continuing the abuse of notation, if T is used to refer to some (T, ), then T°
will be shorthand for (T, ¢¢). Observe that RCAg proves that if T is a labeled
Borel code, then T is a labeled Borel code. Similarly, if (T,)nec. is a sequence
of labeled Borel codes, in RCAg we can construct a code for the intersection or

leaf. All the principles considered in this paper will imply ACAg over RCAg, so nothing will be
muddled, but for the sake of fastidious readers, we will always call these labeled Borel codes to
acknowledge the distinction.
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union of these sets in the obvious effective way, and RCAy will prove that the
result is a labeled Borel code.

2.6. On the maxim that “Borel sets need ATR;”. Because making
meaning out of a standard (labeled) Borel code requires evaluation maps to
be around, ATRy is typically taken as the base theory when evaluating theorems
involving Borel sets. Even when ATR( is not taken as the base theory, theo-
rems involving Borel sets tend to imply ATRy. The probable reason for this was
observed in [5].

THEOREM 2.8 ([5]). In RCAy, the statement “For every Borel code T, there
exists X such that X € |T| or X € |T°|” implies ATRy.

The strength comes from the fact that this statement is asserting the existence
of an evaluation map for X in 7. If f is an evaluation map for X in T, then
1 — f is an evaluation map for X in 7.2

RESTATEMENT (of Theorem 2.8). The statement “For every Borel set, either
it or its complement is nonempty” is equivalent to ATRg over RCAy.

This can make the reverse mathematics of some standard theorems about
Borel sets feel rather empty. Here is an example. Recall that a set A C 2% has
the property of Baire if it differs from an open set by a meager set. That is, there
are open sets U and {D,, },e,, such that each D, is dense, and for all X € N, D,,,
X €U & X € A. A basic proposition is that every Borel set has the property
of Baire, but what is the strength of that proposition in reverse mathematics?
In [5], the relevant notions were formalized as follows.

DEFINITION 2.9. A Baire code is a collection of open sets U, V,{ D, }nen, such
that UNV =0 and the sets U UV and D,, are dense.

The statement PB below formalizes the proposition “Every Borel set has the
property of Baire.”

DEFINITION 2.10. If T is a Borel code and U,V,{D,} is a Baire code, we say
that U, V,{D,,} is a Baire approximation to T if for all X € N,D,,, X € U =
Xe|lT|and X €V = X € |T°|.

DEFINITION 2.11. Let PB denote the statement “Every Borel code has a Baire
approximation.”

PROPOSITION 2.12. [5] In RCAq, ATRg is equivalent to PB.
PROOF. (=) The standard proof uses arithmetic transfinite recursion.
(<) If a set has the property of Baire, either it or its complement is nonempty.

The reverse direction of this proof is highly unsatisfactory. The purpose of
this paper is to propose a variant on the definition of a Borel set which avoids
this and similar unsatisfactory reversals to ATRy.

2The statement in [5] is for original Borel codes, but the proof of the theorem remains valid
for labeled Borel codes.
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2.7. Some landmarks between ATR; and JI. We will end up placing a
variant of PB somewhere in a zoo which exists just below ATRy. Much of what
is known about this region concerns theories, such as A}-CAg, whose w-models
are closed under join, hyperarithmetic reduction, and not much more.

DEFINITION 2.13. A statement of hyperarithmetic analysis is any statement
S such that

1. whenever M is an w-model which satisfies S, its second-order part M is
closed under hyperarithmetic reduction.

2. For every Y, HY P(Y) is the second-order part of an w-model of S, where
HYPY)={X: X <, Y}.

A theory of hyperarithmetic analysis is any theory which satisfies the same re-
quirements as above.

The original definition of a theory of hyperarithmetic analysis, due to Steel [16],
was a theory whose minimum w-model is HY P. The relativized version above
was first explicitly defined in [10]. At the time of Steel’s definition, theories such
as A}-CAq were unrelativized (did not permit real parameters from the model).
However, modern definitions of these theories allow parameters. Therefore, the
relativized definition of theories of hyperarithmetic analysis is the right one for
modern usage.

It would be tempting to hope that there would be some theory of hyperarith-
metic analysis whose w-models are exactly the Turing ideals which are closed
under hyperarithmetic reduction, in analogy to the theorems characterizing the
w-models of RCAy as the Turing ideals, the w-models of WKLy as the Scott
ideals, and the w-models of ACA; as the Turing ideals closed under arithmetic
reduction. However, no such theory can exist.

THEOREM 2.14. [17] For every theory T, all of whose w-models are closed
under hyperarithmetic reduction, there is a strictly weaker theory T', all of whose
w-models are also closed under hyperarithmetic reduction, and which has more
w-models than T .

Therefore, we are stuck with an infinitely descending zoo of statements/theories
of hyperarithmetic analysis.

One theory of hyperarithmetic analysis is most relevant to us. Recall that
a formula of L, ., is a formula constructed from the usual building blocks of
first-order logic, together with countably infinite conjunctions and disjunctions.
In a language which contains no atomic formulas other than true and false,
a formula of L, ., is just a well-founded tree whose interior nodes are labeled
with either U (infinite disjunction) or N (infinite conjunction), and whose leaves
are labeled with either true or false. An evaluation map for a formula of L, ,,
is defined the same as an evaluation map for an element X in a Borel code
T, except that the evaluation map must satisfy f(o) = 1 if £(c) = true and
f(o) =0 if {(o) =false. A formula of L, ., is completely determined if it has
an evaluation map. Classically, every formula of L, ,, is completely determined,
but in weaker theories the witnessing function could fail to exist. A formula is
called true if it has a witnessing function which maps the formula itself to true.
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The following definition and result essentially appear in [10], where L, ,,-CA
goes by the name CDG-CA, and is stated in terms of games. The name L, .,-CA
and the definition given here were introduced in [11].

DEFINITION 2.15 (similar to [10]). The principle Ly, -CA is this statement:
If {¢; : i € N} is a sequence of completely determined L., ,, formulas, then the
set X ={i: ¢; is true} exists.

THEOREM 2.16 (essentially [10]). The principle L., o,-CA is a statement of hy-
perarithmetic analysis.

2.8. Genericity. The concept of genericity stems directly from category; a
sufficiently generic member of a set which has the property of Baire has individ-
ual behavior that agrees with the behavior of a comeager set of reals. In this
subsection we introduce the terminology around genericity and provide proofs of
several folklore results which will be needed later.

A predicate P(X) is called computable if there is a Turing functional A such
that for all X € 2« A(X) halts and outputs true or false according to the truth
value of P(X). A relativized formula of L, ., is a formula of L, ., for which the
leaves bear computable predicates instead of simply true or false. Using the
compactness of 2* to translate between clopen sets and {X : A(X) = true}, it
is immediate that the set of X which satisfy a given relativized formulas of L, .,
are exactly the members of the Borel set coded by essentially the same formula.
If such a formula ¢ is computable, a-ranked, and has a union at the root, then
{X €2v:¢(X)}is a X2 set and the formula is called a X0 formula. Of course,
the input to the formula could also be a natural number, in which case it defines
a %0 subset of w.

If S C 2¥ is a set of strings, a real X is said to meet S if for somep € S, p < X,
while X is said to avoid S if some p < X has no extension in S. The set S is
dense if every p € 2<% can be extended to meet it. A real X is called a-generic
if X meets or avoids every %0 set of strings. The following propositions, which
taken together informally assert that set of strings which force a $0 statement
is X9 are folklore.

PROPOSITION 2.17. Uniformly in a code for a X9 set A, there is a ¥ code
for an open set U, as well as a uniform sequence of X0 codes for dense open sets
D, such that for all X € Ng Dy, we have X € A if and only if X € U.

ProoOF. This is a straightforward effectivization of the usual proof that every
Borel set has the property of Baire.

The result is is immediate if @ is the 0 ordinal (in which case all sets described
are clopen). Suppose that it holds for all b <, a. We have A = U,, 4,, where each
A, is Hgn for some b,, <, a. Apply the induction hypothesis to the complements
AS to get a sequence of open sets U,, and a double sequence of dense open sets
Dy, 1., where each U, and D,, , have a Egn code, and any X € NiDy 1 is in A
if and only if it is in U,. Define V,, to be the interior of US. Then each V,, is
uniformly Egn 41 and thus $0. We can let U = U,,V,, and let the sequence of
dense open sets include all sets D,, , as well as sets of the form U, UV,,. Suppose
that X meets all these dense sets. The X € A exactly if X € A,, for some n,
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which happens exactly if X & U, for some n. Since X € U, UV, this is true
exactly when X € V,, for some n, equivalently when X € U. B

PROPOSITION 2.18. If ¢(X,q) is a X0 formula, there is a XU formula R(q)
such that for all a-generic reals X,

{g:0(X, )} ={q:InR(X [ n,q)}

PROOF. By the previous proposition, uniformly in ¢ there is a code for a %2
set U, € 2<% and a sequence of XY sets Dy C 2<% such that each Dy, is dense
and for any X that meets each Dy, X meets U, if and only if ¢(X,q). Thus
R(r,q) can be taken to be Ip(p € U, and p < r). o

Now we review some notions from higher genericity. We assume a general
familiarity with hyperarithmetic theory, and refer the reader to [14] for definitions
and details. For G € 2¢| it is well-known that an element X of 2¢ is Al(G) if and
only if it is HY P(G), if and only if there is some b € O such that X <y HC.

Recall that if T' is a pointclass, X € 2“ is called I'-generic if X meets or avoids
every open set U with a code in I'. (We have already seen this in the case
I =%%) We are interested in Aj-generics G with the additional property that
Wik = w¢. By [7], these are precisely the ¥1-generics. However, for our purposes
the formal definition of ¥}-genericity seems less useful than the “Al-generic and
wfk—preserving”, and indeed we never use the equivalence with ¥1-genericity in
any way other than as an (accurate) notational shorthand.

The following three propositions must be folklore, but we give their proofs
here. Recall that A and B are relatively I'-generic if A is I'(B)-generic and B is
I'(A)-generic.

PROPOSITION 2.19. For Gy, G1 € 2%, we have Gy ® Gy is Xi-generic if and
only if Gy and G are relatively %1-generic.

PrOOF. Consider the argument in [4, Thm. 8.20.1] (originally due to [18]),
where it is shown that A @ B is n-generic if and only if A and B are relatively
n-generic. Observe that at no point do they make use of the fact that n is
finite, and the same argument goes through if n is replaced with any a € O.
(Proposition 2.18 is used in the a € O case.) Therefore the same argument
shows that A ® B is a-generic if and only if A and B are relatively a-generic.
Observe that A is Al-generic if and only if A is a-generic for all a € O.

Now suppose that Gy ® G is Xi-generic. We will show that Gy is X1(Gy)-
generic. We have w09 = ek = ;&1 50 it suffices to show that G is Al(G))-
generic, or equivalently, that Gy is a-generic relative to G for all a € O (here we
use the fact that lel = w{*). This follows from the previous paragraph because
Go @ (G is a-generic.

On the other hand, if Gy and G are relatively ¥1-generic, then in particular

each is Yi-generic, so w1G° = lel = w§¥, and by relative ¥i-genericity, we also
have w0 P9 — )¢k 3 Therefore it suffices to show that Gy @ G is Al-generic,

3Although [7] does relativize, the conclusions here can be established without us-
ing that relativization. It suffices to show that at least one of Go, Gi is wffk—
preserving. Suppose that Gp computes a linear order of order type wfk. Then {X :
X computes a linear order of order type wffk} is A%(Go) and meager, so G1 does not belong
to it. Thus wfl = wik.
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or equivalently, that it is a-generic for all a € O. This follows because Gy and
G are relatively a-generic for all a € O. -

The following two propositions will be used later in a relativized form. To
reduce clutter, we do not write the relativized form, but the reader can verify
that all the arguments relativize.

PROPOSITION 2.20. If Go @ Gy is Xi-generic, then AL(Go) N ALG) = Al

PRrOOF. If X € Al(Gy) N AL(G)), then since w = W& = w§*, there are
a € O and indices e and f such that X = ®,(HS0) = &;(HS"). Consider the
set

W={YeZz: o (H))=>;H?)}.

This set is Al, so it has the property of Baire, and in particular there is a
Al open set V such that every sufficiently generic Y & Z is an element of V
if and only if it is an element of W. Here the amount of genericity needed is
not full Al-genericity, but rather c-genericity, where ¢ = a + O(1). To see that
c-genericity suffices, first use Proposition 2.1 to write the defining property of W
as a c-ranked relativized formula of L, ,, then apply Proposition 2.18.

Since G @ G is Al-generic and in W, it is in V. Let p,q € 2<% be such that
p < Go,q <Gy and pdq € V. Now let Y be any c-generic, hyperarithmetic
real with p < Y. Then since G; is Al-generic, it is Al-generic relative to
Y, so in particular it is c-generic relative to Y. Using the ordinal version of
[4, Thm. 8.20.1] a second time, we conclude that ¥ & G; is c-generic, and
meets V. Therefore, Y & G; € W, and we obtain a Al formula for X, that is,
X =, (H)). -

PROPOSITION 2.21. Let Gy be Xi-generic and P a hyperarithmetic predicate.
If there is a Y € AY(Gy) such that P(Y') holds, then for all Al-generic Gy, there
is a Y € AYN(G1) such that P(Y) holds.

PROOF. Since wf* = w{, there is some a € O and an index e such that
Y = &,(HE?). Then R(X) := JeP(®.(H)) is a hyperarithmetic predicate
that holds of Gy and holds of p~ Gy for any p € 2<%. Therefore, for any Al-
generic G, R(G1) holds. a

Finally, we remark that for any Z, the set of Aj(Z)-generics is ¥1(Z). This
is because

X is Aj(Z)-generic <= VY € A}(Z)[X is 1-generic relative to Y.

§3. Completely determined Borel codes. We propose the following vari-
ation on the definition of a Borel code. We shall see that when this variant is
used, the unsatisfactory shortcut in Proposition 2.12 vanishes, and indeed the
reversal no longer holds.

DEFINITION 3.1. A labeled Borel code T is called completely determined if
every X € 2% has an evaluation map in T. A completely determined Borel code
s a labeled Borel code that is completely determined.
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When we formalize statements in reverse mathematics, in order to not conflict
with existing convention, we will say completely determined Borel set to indi-
cate when the formalized version of the statement should call for a completely
determined Borel code.

The following facts are immediate.

PrOPOSITION 3.2. In RCAg,

1. If T is a completely determined Borel code, then T¢ is also a completely
determined Borel code.

2. For every completely determined Borel set A and X € 2%, either X € A or
X € A.

With only a slight amount of effort, we also have the following.

ProprosiTiON 3.3. In RCAg, if A is a completely determined Borel set and
h: 2% — 2% s continuous, then h=(A) is a completely determined Borel set.

ProOF. Let T be a completely determined Borel code and h : 2¥ — 2¥ a
continuous function. Then h is encoded by a sequence of pairs (p1, 1), (p2,¢2) - - -
from 2<% x 2<% which are compatible in the sense that p < p'=—=¢q =< ¢
whenever (p,q), (p',q") are in h. If (p,q) is in h, it means that p < X implies
that ¢ < h(X). For h to be well-defined, we must have that for each X, there
are arbitrarily long ¢ for which ¢ < h(X). Define S by starting with S =T and
modifying each leaf o € T' as follows:

1. In S, o is a union.

2. For each n, 0”n € S and is a leaf.

3. If U is the clopen set attached to ¢ in T, let 0™ n be labeled with a code

for the clopen subset of h=1(U) defined by

Ulpi] : (pi, @) € hyi <n,lqi] CU}
We claim that S is completely determined and X € |S] if and only if h(X) € |T.
Let f be an evaluation map for A(X) in T. We claim that f can be extended to
an evaluation map for X in S by adding f(oc"n) = 1 if and only if X is in the
clopen set attached to c”n in S. One only needs to check that the logic of the
evaluation map is correct at each o which was a leaf in T =

The fact that Borel sets are closed under countable union, which was trivial
using the standard definition of a Borel set, has quite some power for completely
determined Borel sets.

PRrROPOSITION 3.4. In RCA, the statement “A countable union of completely

determined Borel sets is a completely determined Borel set” is equivalent to
Loy w-CA.

ProOOF. If {T* : k € N} are completely determined Borel codes, and T =
AU {(k)"o : o € T*}, we claim that, assuming Ly, ,-CA, T is completely
determined. Fixing X, let ¢, , be the formula obtained by replacing each clopen
set at each leaf of T* by true or false according to whether X is in each clopen
set. Any evaluation map for X in T* can be restricted to an evaluation map for
X in TF, which is an evaluation map for ®k,o, s0 all these formulas are completely
determined. One obtains an evaluation map for X in T by letting f(c) = 1 if



THE DETERMINED PROPERTY OF BAIRE IN REVERSE MATH 15

and only if ¢, is true, and then non-uniformly filling in f(A) to its unique
correct value.

Conversely, if {¢r : k € N} are completely determined, these formulas can
be modified at the leaves to become completely determined Borel codes T* for
() or 2 according to whether they are true or false. Defining T' as above, any
evaluation map f for T satisfies f({k)) = 1 if and only if ¢y, is true. -

Now we consider the completely determined variant of PB.

DEFINITION 3.5. Let CD-PB be the statement “Every completely determined
Borel set has the property of Baire.”

Our main question is: what is the reverse mathematics strength of CD-PB?
ProposITION 3.6. In RCA(, CD-PB implies L, .,-CA.

PROOF. Any sequence {¢ : k € N} of completely determined formulas of
Ly, ., can be modified at the leaves to produce a sequence of completely deter-
mined Borel codes which code either [0%1] or () depending on whether ¢y, is true or
false. The union of these remains completely determined because each X passes
through at most one of these sets. Any Baire approximation to Ug.4, is true [Okl}
computes {k : ¢y is true}. o

This places CD-PB somewhere in the general area of ATRy and the theories
of hyperarithmetic analysis. If CD-PB were equivalent to L, .-CA, our variant
would be subject to the same kinds of critique that we made of the original defi-
nition (all the strength of the theorem coming essentially from Proposition 3.4).
However, it turns out CD-PB is equivalent to none of the principles mentioned
so far.

When considering how to show that CD-PB is strictly weaker than ATRy, it
is informative to consider the usual proof that every Borel set has the property
of Baire. This proof uses arithmetic transfinite recursion on the Borel code of
the given set. It constructs not only a Baire code for the given set, but also
Baire codes for all Borel sets used to build up the given one. Below, we give
the name Baire decomposition to this extended object that ATRy would have
created. Superficially, CD-PB would seem weaker than the statement “every
completely determined Borel set has a Baire decomposition”, and one might
wonder whether the additional information in the Baire decomposition carries
any extra strength. The purpose of the rest of this section is to show that it
does not (Proposition 3.8), and to mention exactly how a Baire approximation
is constructively obtained from a Baire decomposition (Proposition 3.9). The
point is that any model separating CD-PB from ATR( will need another method
of producing an entire Baire decomposition, not just the Baire approximation.

DEFINITION 3.7. Let T be a completely determined Borel code. A Baire de-
compositon for T is a collection of open sets U, and V, for o € T such that for
each o € T and each p € 2<%,

1. U, UV, is dense and U, NV, =0,

2. if o is a leaf, then U, is dense in the clopen set C coded by (o) and V, is

dense in C°,
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3. if o is a union node, then U, is dense in |J,, Uy~, and |, Uy~ is dense
mn Uy,

4. if 0 is an intersection node, then V, is dense in \J, Vory,, and |J,, Vo, is
dense in V.

PROPOSITION 3.8 (ACAy). CD-PB implies that every completely determined
Borel set has a Baire decomposition.

PRrROOF. Let T be a completely determined Borel code. Informally, we parti-
tion the space into countably many disjoint clopen pieces (plus one limit point)
and put an isomorphic copy of the set coded by T, in the oth piece. Then we
show that a Baire approximation to this disintegrated set can be translated back
to a Baire decomposition for the original set coded by T

More formally, for any p € 2<%, let T'[p] denote the labeled Borel code for
{p™X : X € |T|}. This is an effective operation on codes. Recall that each
leaf codes a clopen set by a finite list F' C 2<“. By replacing each such F' with
{p~q: q € F}, we achieve the desired effect.

For any 0 € w<¥, let [o] be a natural number which codes o in a canonical
way. Define S to be the labeled Borel code

S={\u{[o]"r:TeT,j0lN],0ceT}

where \ is a U and all other labels are inherited from the T,,[0/°11]. Then S is
completely determined: for any X, if X = 0¥, then the identically zero map is
an evaluation map for X; if X = 0"17Y, then if f is an evaluation map for Y
in T and n = [o], an evaluation map g for X in S can be defined by letting
g(Jo]"7) = f(077) on
{[e]"T: 7€ TU[O(U] 1]},
g(A) = f(0), and g identically zero elsewhere. Therefore, for all Y and o,
07117 Y €|S] = Y € |T,|.

Now suppose that (U, V, { Dy }rew) is a Baire approximation for S. Then define
Uy ={q:0l°11~ge U} and V, = {q: 01711°¢ € V}. We claim that (U, V,)ser
is a Baire decomposition for T'. Property (1) of a Baire decomposition is clear.
For property (2), this follows because if [g] is contained in the clopen set |T,],
suppose for contradiction that there is r extending ¢ with [0 [o] 17r] C V. Then
for all X € [r], we have X € |T,| and thus 0/°11"X € U, a contradiction.
Therefore V, N [q] = @, so U, is dense in [g]. A similar argument applies to
establish that V is dense in [g¢] if [g] is contained |T¢|. For property (3), letting
o be a union node and p € 2<%, we will show that U, is dense in [p] if and only
if UpUy~,, is dense in [p]. Suppose that U, U,~,, is not dense in [p]. Let g extend
p such that for all n, U,~,, N [q] = 0. Then define Y so that ¢ < Y and the
following collection of comeager events occur:

(i) Foralln, Y € V,~,

(ii) For all n, 0l°""11°Y € N Dy,
(iil) Y € U, UV,

(iv) 0“1~y € Ny Dy,
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The first comeager event guarantees that Y € V-, for all n. Together with
second comeager event this implies that 0/ ?11°Y ¢ |S|, and therefore Y ¢
|Ty~n|. Therefore, Y & |T,|. In the third dense event, if we had Y € U,, the
fourth comeager event would imply that Y € |T,|; therefore it must be that
Y € V,, and so U, is not dense in [p]. On the other hand, if U, is not dense in
[p], then assuming U, U,~,, is dense in [p] leads to a contradiction, for we may
similarly define Y to meet V, N [p] and U,U,~,,, while also satisfying (ii) and
(iv).

The proof of (4) is similar to the proof of (3). -

Turning a Baire decomposition into a Baire approximation involves extract-
ing the comeager set on which the approximation should hold. The following
proposition gives a canonical sequence of dense open sets which suffices for this.

PROPOSITION 3.9 (ACAg). Let T be a completely determined Borel code and
(Us, Vy)oer be a Baire decomposition for T. Let {Dy,}new consist of the follow-
ing dense open sets:

1. U, UV, foroeT,
2. VoUl, Uy~ for o € T a union node, and
3. Uy U, Vorn for o € T an intersection node.

Then, (Ux, Vx,{Dn}new) is a Baire approzimation for T.

PROOF. The properties of a Baire decomposition suffice to ensure that (Ux, Vi, {Dn }new)
is a Baire code. We must show that if X € N,D,, then X € U= X € |T)|
and X € V\= X € |T|°. Fix X € N,D,,. We prove by arithmetic transfinite
induction that for all o € T, if X € U, then X € |T,| and if X € V, then
X € |T¢|. This holds when o is a leaf.

If o is a union node, suppose X € U,. Then X ¢ V,, but X e V, U, Uy~y,
so X € U,~, for some n. Then the induction hypothesis gives us X € |T,~,],
so X € |T,| since o is a union node.

On the other hand, if X € V, let p < X be such that p € V,. Then U,N[p] = 0,
50 UpUy~, N [p] = 0. Recall that Uy~,, U V,~,, is dense by definition. So for
each n, V,~, is dense in [p]. Therefore, X meets each V,~,, so by induction
X € |T¢. | holds for all n. Therefore, X € |T¢|.

The case where ¢ is an intersection node is similar. B

84. CD-PB does not imply ATR;. Our non-ATRy method of producing a
Baire decomposition involves polling sufficiently generic X to see whether they
are in or out of a given set. For our purposes, sufficiently generic means ¥1i-
generic.

Let G = @, G; be a X} generic. Let M = {J, A1(B,.,, Gi). This is the
model which will be used to separate CD-PB and ATR,. But first, some lemmas.

LEMMA 4.1. M = Ly, ,-CA. Furthermore, whenever F C w is finite and the
completely determined sequence of formulas {¢y, : k € N} is in AN, cp Gi), we
also have

{k: ¢y is true in M} € Al (@Ch)

i€F
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PrOOF. We begin with three facts. First, applying Proposition 2.19 to the de-
composition G = P, p GiBD, ¢ Gi, we conclude that P, G is S1(PBer Gi)-
generic.

Second, fix j € F. Applying Proposition 2.19 to G = G; @ @i# G;, we have
that G; is 31(@D,.; Gi)-generic and hence G is 31 (D, Gi)-generic.

Third, fix jo,j1 € F with jo # j1. By the same argument, we have that G,
is ©1(Gj, ® @, Gi)-generic and that G;, is X1(G;, ® @, p Gi)-generic. By
Proposition 2.20 relativized to @,cp Gi, it follows that Af(Gj, & @;cp Gi) N
A%(Gjl ©Dicr Gi) = A%(@iGF Gi).

We now apply Proposition 2.21 relativized to @ieF G;. Fixj¢ Fand k € w.
Since @, p Gi is X1(D;cp Gi)-generic, G is X1 (P, Gi)-generic and there
is a Af(G) evaluation map for ¢y, it follows that ¢y is completely determined
in AHG; @ @,cr Gi). Because this holds for any j ¢ F, ¢ is completely
determined in A} (P, G;) by the third fact above. Since Ly, ,-CA is a theory
of hyperarithmetic analysis, the conclusion follows. -

PROPOSITION 4.2. M [~ ATR,.

PRrROOF. Let a* € O*. Then M believes that a* is an ordinal. For if there were
a Al(G)-computable descending sequence in a*, then for some b € O (here we
use the fact that w* = w{) the statement R(X) : “H;X computes a descending
sequence in a*” is a hyperarithmetic predicate which holds of G. As R holds of
p~G for any p € 2¢, the set of X for which R holds is comeager (since each p~G
is ¥1-generic, there can be no p which forces ~R(X), therefore the set of p which
force R(X) is dense). Furthermore, R(X) is Eg+0(1) , 50 R(X) holds for any X
which is b + O(1)-generic. There is a hyperarithmetic such X. But then HZ;X is
also hyperarithmetic, contradicting that a* has no hyperarithmetic descending
sequence. So a* is well-founded, according to M.

For contradiction, suppose there were a jump hierarchy on a* in A}(G). Then
for some b € O, R(X) := “H;* computes a jump hierarchy on a*” is again a
22 +o() predicate, where R holds of G. (Recall that being a jump hierarchy on
a* is just a I1Y property). Arguing as above, hyperarithmetically in any b+ O(1)-
generic X, we would have a jump hierarchy on a*, which is impossible since a*
has no hyperarithmetic jump hierarchy. -

Below, the way that M can produce a Baire decomposition without resorting
to arithmetic transfinite recursion is by polling a sufficiently generic element G;
about whether p~G; € |T| while varying p € 2<% to get a complete picture of
the comeager behavior of T

THEOREM 4.3. There is an w-model of CD-PB that does not satisfy ATRg.

PRrROOF. Let M be as above. Let T € M be a labeled Borel code which is
completely determined in M. We consider the case where T' € A{; the case where
T € AP, <n Gi) follows by relativization. Since 7' is completely determined,
for each G; and each p € 2<%, the statements p~G; € |T,| can be understood as
a completely determined formulas of L,,, ., (by replacing the leaves of T, with 0
or 1 according to whether p~G; is in those sets). These formulas are uniformly
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Al(G;). Therefore, by Lemma 4.1, we have
{(o.p) :p"Gi € T, |} € AL(Gy)
Therefore, for each i, A}(G;) contains the sequence (U, V%), er defined by
Up={p:Ya=p.q"Gi € |T,|},  Vy={p:Var=pad U}
We claim that for each i # j and for each o € T, the collections
(Ug—’\7-7 V;AT)TETG7 (U(z”T7 VIZAT)TETU

are Baire decompositions for T, and are equal. The proof (for fixed i,j) is
carried out inside of M by arithmetic transfinite induction on the rank of ¢ in
T. Specifically, we claim that

(1) If o is a leaf, then Ul = the clopen set coded by o and V, = (UZ)®.

(2) If o is a union node, then for all p € 2<%, p € U} if and only if J,, U’ is
dense in [p].

(3) If o is an intersection node, then for all p € 2<%, p € V! if and only if
U, V., is dense in [p].

(4) Ui =U: (and thus VJ = V7).

Note that the definition of the V! in terms of U guarantees that UZ U V! is
dense and U: NV} = ), and the remaining parts of the claim suffice to establish
that we have a Baire decomposition.

When o is a leaf, it is clear that U: and UJ consist of precisely those p such
that [p] is contained in the clopen set coded by ¢(o).

Now fix an interior node o. By induction, we can assume that for all 7 € T
properly extending o, condition (4) holds, so we drop the superscripts and denote
these open sets by U, and V.. Since Properties (1)-(3) hold for p extending
such 7, we have that (U,,V,),cr, are a Baire decomposition for 7. We let
D,  denote the canonical sequence of dense open sets from Proposition 3.9
corresponding to this Baire decomposition. Since (Dy,.7)m € A (G;) N ALG)),
so by Proposition 2.20, (D, +)m € Al. Therefore, for all p € 2<%, we have
p~Gi,p”Gj € NpDy, ». Therefore, if p°G; € U:, then p~G; € |T;|, and if
p~G; € V;, then p~G,; & |T;|, and the same holds for G;.

Suppose that ¢ is a union node. To prove (=) in (2), fix ¢ € UL. We need
to show that {r € 2<% : ¢"r € J,, Us~,} is dense. For a contradiction, suppose
la~ro) NU,, Us~n = 0 for some fixed 7. To obtain a contradiction, we will show
that for all n, we have ¢"ry'G; & |T,~,|. Since o is a union node, it follows that
q"ry Gi & |Ty| contradicting the fact that ¢ € UL.

Fix n and let 7 = 0™ n. Since 7 properly extends o, we have that ¢"ry’'G; €
M., D, by the comments two paragraphs above. Since U, U V; is dense but
U, N[q"ro] = 0, it follows that V. is dense in [¢"r¢] and therefore ¢”ry G; € V.
From ¢~ry'Gi € N, Dm,» and ¢"ry G; € V;, it follows that ¢"ry G; & |T5| as
required to complete the contradiction.

To prove (<) in (2), assume that |J,, U,~,, is dense in [¢]. We need to show
that ¢ € UL. Fix rg € 2<¥. Since |J,, Uy~, is dense in [g], it is also dense in
[¢"70]. By the induction hypothesis and Proposition 2.20, |J,, Uy~, is A}. Let
A={r:3n(@riT € Uy~,)}. A is dense and is Al. Therefore, G; meets
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the set A. Fix 7 € A such that 7 < G; and fix n such that ¢"ry7 € Us~,.
Then ¢"ryG; € Uy~y,. So, as noted above, ¢"ry'Gi € (), Dm.o~n and so
q°ry Gi € |Ty~p|. As 7o was arbitrary, this shows that ¢ € U..

The exact same argument shows that (2) is also satisfied when i is replaced by
j. Therefore, Ul and UZ are described by exactly the same condition, so they
are equal.

Finally, let o be an intersection node. First, consider the direction (<) of
(3): Suppose that ¢ & V¢ and fix 7o such that ¢"ry € U.. We will show that
q"rg € Uy, for all n, so |J,, Vory, is not dense in [g] (it is disjoint from [¢"7o]).

Fixing n, consider an arbitrary string p extending ¢”rg. Since ¢"ry € UL,
we know that p~G; € |T,|. Since o is an intersection node, it follows that
p~G; € |T,~,|. Since p was an arbitrary string extending ¢~ rg, this implies
q"ro € Uy~, as required to complete this direction of (3).

To prove (=) in (3), assume (J,, V,~, is not dense in [¢]. We need to show
that ¢ & V.. Fix ro such that [¢"ro]NU,, Vo~n = 0. Therefore, for each n, U, ~,,
is dense in [¢"ro].

Fix an arbitrary string p extending ¢"rg. We claim that for all n, we have
p~G; € Uy~,. First, note that U,~,, is dense in [p] and that by the induction
hypothesis and Proposition 2.20, U,~,, is Al. We shift U,~,, to a set A = {r:
p~1 € U,~,} which is dense and Al, so G; meets A. Let 7 € A be such that
7 < G;. Then, p~1 € U,~,, and so p~G,; € U,~,,. Furthermore, as noted above,
since p~G; € N, Dim.o~n, it follows that p~G; € |T,~,|. Since this property
holds for each n and since o is an intersection node, it follows that p~G; € |T,|.
The string p extending ¢"ro was arbitrary, so by the definition of UZ, we have
q"ro € UL, and therefore ¢ ¢ V! to complete the proof of (3).

We have actually proved a little more. Inspecting the argument for (=) in
(3), we see that whenever [¢|NJ,, Vorrn, = 0, we have ¢ € U?; and inspecting the
argument for (<) in (3), we see that whenever ¢ € U}, we have [¢]NJ,, V,~, = 0.
This gives a definition of U¢ that does not depend on i, and indeed the arguments
above could be repeated exactly for UJ. Therefore, UL = UJ in the case where
o is an intersection as well.

We conclude that (U, Vs )ser is a Baire decomposition for T', and so T has a
Baire approximation in M. Therefore M satisfies CD-PB but not ATRy. a

§5. Decorating trees. In order to show that CD-PB is strictly stronger than
L., ,w-CA, we need to make some techniques for building non-standard Borel
codes in a way that ensures they are completely determined.

A non-standard Borel code is a code that is not actually well-founded, but
which the model thinks is well-founded. These fake codes are essential for the
strength of CD-PB. If a Borel code is truly well-founded, then it has a Baire code
which is hyperarithmetic in itself. Since any w-model of L, ,,-CA is closed under
hyperarithmetic reduction, L, -CA alone would be enough to guarantee the
Baire code exists in the case when the Borel code is truly well-founded (at least
in w-models). So now we are going to describe how to construct a non-standard
Borel code which makes every effort to be completely determined.
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If we make a Borel code T which is not well-founded, the most likely scenario
is that it is also not completely determined. This is because, in general, it
might take a jump hierarchy the height of the rank of T in order to produce
an evaluation map. So in this section, we show how to add “decorations” to
the tree, which shortcut the logic of the tree to make sure that for a small set
of X, there is an evaluation map for X in the decorated tree. In Section 6,
“small” is countable, and in Section 7, “small” is meager. This comes at the
cost of trashing any information about whether X was in the original set, but
if that set had a Baire approximation, then its decorated version should have
the same Baire approximation, since the set of X whose membership facts were
overwritten is small. We use this to show that if the model satisfies CD-PB, then
the “small” set cannot be the entire second-order part of the model.

Suppose that we have a partial computable function h which maps a number
b € O* to a pair of b-ranked labeled trees (P, Np). We do not mind if A happens
to also make some outputs for b ¢ O*.

The intention is that when b € O, any X € |P,| U |Np| will have an approxi-
mately H, I;X -computable evaluation map in the decorated tree, and X will be in
the decorated tree if X € |P,| and out of the decorated tree if X € |N,|. (In
practice we will always have |Py| N |Np| = 0.)

The operation Decorate is defined below using effective transfinite recursion
(with parameter <,; see comment in the next paragraph), and therefore is well-
defined on a-ranked trees T for all @ € O*T. This is because the effective
transfinite recursion can be carried out in HY P(T') with the same result.

Note that as it is defined here, Decorate is not quite a computable operation.
That is because the relation <, is only c.e., not computable. To make Decorate
computable, one should replace (2b + 1) below with (2(b,s) + 1), where s is
the stage at which we learn that b <. pr(X). This has no effect on the logic
of the tree, but does result in excessive notational clutter. The reader who
prefers a computable operation could replace (2b+ 1) everywhere with the more
complicated expression above. For our purposes, it is perfectly fine that Decorate
is computable relative to the parameter <, (a linear order which is itself §'-
computable). In any case, all results of this section do relativize and they will
later be used in a relativized form.

DEFINITION 5.1. The operation Decorate is defined as follows. The inputs are
an a-ranked labeled tree T and a partial computable function h as above.

Decorate(T,h) = {A} U U (2n)” Decorate(T ), h)
(n)eT
u U (2b+ 1)" Decorate(Qp, h)
b<.pr(N)
where Qp = Py if X is a U in T, and Qy, = N if X isaninT.
The rank and label of A in Decorate(T, h) are defined to coincide with the rank

and label of X in T. The ranks and labels of the other nodes in Decorate(T, h)
are inherited from Decorate(Ty,), h) or Decorate(Qy, h) as appropriate.

Since P, and N, are b-ranked, Decorate(T, h) satisfies the local requirements
on a ranking. So if T" is a-ranked, so is Decorate(T', h).
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Similarly, if T" and each P, and N, are alternating, and each P, and N, have
an intersection or leaf at their root, then Decorate(T', h) will also be alternating.
(Note that in this case, N{ has a union at its root).

The following is the essential feature of a decorated tree.

PROPOSITION 5.2. If o € Decorate(T, h) has rank b, then for all d <, b,
Decorate(T’, h),~ (24+1y = Decorate(Qq, h),
where Qq = Py or N as appropriate.

PROOF. By induction on the length of o, if o € Decorate(T, h), then there
is some tree S such that Decorate(T, h), = Decorate(S,h). The rank of o in
Decorate(T, h) coincides with the rank of A in S, and this rank is b. Therefore, by
the definition of Decorate(S, h), we have Decorate(S, h) 2441y = Decorate(Qa, h).

_|

DEFINITION 5.3. A nice decoration generator is a partial computable function
which maps any b € O* to alternating, b-ranked trees (Py, Ny), where each P,
and Ny have an intersection or a leaf at their root.

LEMMA 5.4. Let h be a nice decoration generator. Suppose b € O, and suppose
that X & |Py| U |Ny4| for any d <. b. Then for any b-ranked tree T, X €
| Decorate(T, h)| if and only if X € |T.

PrOOF. By induction on b. Since b € O, T is truly well-founded, so there
is a unique evaluation map f for X in T. Further, for each d <, b, there are
unique evaluation maps gp,q, gn,q for X in Decorate(Py, h) and Decorate(Ng, h).
Consider the function g : Decorate(T, h) — {0,1} defined by

o(0) = {f(g) if each component of ¢ is even

9g,d(o1) if 0 =0 (2d+ 1)" 01 and each component of oy is even,

where the division ¢/2 is taken componentwise, and where @ is either P or N
depending on whether oq is a union or intersection in Decorate(T, h).

Since g(A) = f(A), it is enough to show that g is an evaluation map for X in
Decorate(T, h). Clearly g satisfies the logic of the tree at leaves and at nodes
which have an odd component. Consider o € Decorate(T, h) where o is a U
and all components of o are even. By induction, since Py is a d-ranked tree,
X € |Decorate(Py, h)| if and only if X € |P4|. By hypothesis, X ¢ |Py]|, so
gp,a(A) = 0, so by Proposition 5.2, g(c7(2d + 1)) = 0. Therefore, the nodes of
this form can be ignored: we have

Sm(g(o"m) = 1) <= 3n(g(o”(2n) = 1) < f(o/2) =1

so g(o) takes the correct value. The argument if ¢ is a N is similar, except that
as X & |Np|, we have X € |Ny|, and therefore gn q(A) = 1, meaning that nodes
of the form o7 (2d + 1) can be safely ignored when taking an intersection. -

LEMMA 5.5. Let a € OF and b € O with b <, a. Let T be an alternating,
a-ranked tree and let h be a nice decoration generator. Suppose X € |Py| U|Np|.
Then

1. X has a unique evaluation map in Decorate(T, h).
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2. This evaluation map is Hlﬁ%T(l)—computable,

3. If b is <.-minimal such that X € |Py| U |Np|, and b <. pr({n)) for all
(ny € T, and g is the unique evaluation map for X in Decorate(T, h), then
(a) X € |Py|\ [Np|=g(N) =1
(b) X € [Ny|\ [Po| =>g(N) = 0.

PRrROOF. It suffices to show all three parts in the case when b is <,-minimal
such that X € |Py| U |Ny|.

We prove (1) and (2) by showing that for each o € Decorate(T, h), there is
only one possible value for g(o) for any evaluation map g for X in Decorate(T', h)
and that H, zﬁ%Tu) suffices to compute this value. Since these unique values satisfy
the internal logic of the tree (which the reader can verify from the description
below), they constitute an evaluation function for X in Decorate(T, h), proving
(1) and (2).

To show that there is only one possible value for g(o), we break into cases
depending on the rank and label of o in Decorate(T’, h) and on whether X € | B
or X € |Np|. Note that H, ,;X T can uniformly determine the appropriate case for
each o.

Case 1. Suppose p(o) <. b. Since b € O, Decorate(T, h), is truly well-founded.
Therefore, there is a unique evaluation map f for X in Decorate(T, h), and we
have g(o) = f(A). The map f is uniformly H b)i%:’(jl)-computable.

Case 2. Suppose b <, p(0), o is a union node in Decorate(T, h) and X € |P|.
In this case, we claim that g(c) = 1. By Proposition 4.2, all nodes extending
07 (2b+ 1) have rank b or less. Therefore, there is a unique evaluation map f on
Decorate(T, h)s~ 2541y and so g(c7(2b+ 1)) = f()\). By Lemma 4.4, X € |Py|
implies f(A) = 1. Therefore, g(c7(2b+ 1)) = 1 and because ¢ is a union node,
g(o)=1.

Case 3. Suppose b <, p(0), o is an intersection node in Decorate(T, h) and
X € |Py|. Since Decorate(T), h) is alternating, each node ¢™m is either a union
node or a leaf. If p(67~m) <. b, then the value of g(c7"m) is fixed as in Case 1. If
b <. p(c™m), then g(c™m) = 1 as in Case 2. Together, these values determine
g(o) uniquely. H;*®" suffices to compute the values of g(c”"m) and it takes one
extra jump to determine if g(c”m) = 1 for all m, and hence determine g(o).

Case 4. Suppose b <, p(c), o is an intersection node in Decorate(T, h) and
X € |Np|. An analogous argument to Case 2 shows that g(o) = 0.

Case 5. Suppose b <, p(c), o is a union node in Decorate(T, h) and X € |Np|.
This case is analogous to Case 3 and the unique value of g(o) can be determined
with one extra jump.

These cases are exhaustive, but if |P,|N|Np| # 0, then more than one case can
apply. However, if X € |P,| N |Np|, the cases are compatible. In this degenerate
situation, we have that for any o such that b <, p(o), g(o) =1 if ¢ is a union
node and g(o) = 0 if o is an intersection node. This completes the proof of (1)
and (2).

For (3), if X € |Py| \ |Np|, and if A is U, then g(A) = 1 just as above. But if A
is N, then we claim that for each m, g({m)) = 1. (Note that neither A nor (m)
can be a leaf in T because b <, a and the hypothesis on part (3) specifies that
b <. pr({m)) for each m). If m = 2n for some (n) € T, or if m = 2d + 1 for
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some d >, b, then because b <, pr((n})) for all n, and each (m) is a union, again
we have g((m)) = 1 for such m. In the remaining case, when m = 2d + 1 with
d <, b, then since b is minimal such that X € |P,|U|Np|, and X ¢ |Ny|, we have
X € |N§|. So by Lemma 5.4, X € |Decorate(Ng, h)|, so g({(2d + 1)) = 1. Since
g({m)) = 1 for all m, we have g(\) = 1 as well. A complementary argument
establishes (3b). a

§6. CD-PB does not hold in HY P. We now show that CD-PB is not a
theory of hyperarithmetic analysis by showing that CD-PB fails in the w-model
HYP. In brief, we let E, code a canonical universal X0 set. Applying this
definition also to pseudo-ordinals a*, we make a computable code for the set

U Bl n{X :bisleast st. X <p H,}.

b<.a*

We decorate the code to give each Hj-computable set an Hj-computable eval-
uation map. Then we argue that the result is a code which HY P thinks is
well-founded and completely determined, but which can have no HY P Baire
approximation.

THEOREM 6.1. CD-PB does not hold in HY P.

ProoF. Using Proposition 2.1, there is a computable procedure which, on
inputs @ € O, e € N, p € 2<%, outputs an index for a 2%ranked computable
Ly, ., formula Fj . ,, which holds true if and only if p € WHa Transform each
formula F, ., into a Borel code by swapping false for (), and true for [0°17p].
Then take the union of all of these, obtaining a code E, of rank a + O(1) such
that for all a € O,

Bl= U 0179l
e,p : pEWeH“

For any pseudo-ordinal a*, W4~ is not well-founded, but it has no hyper-

arithemtic descending sequence, so HY P believes W~y is well-founded. Then

HY P also believes that Ej is well-founded for any b <, a*, because Fj is

(b + O(1))-ranked, so any path through Fj would reveal a descending sequence

in Wp(q+). We may assume that £} are alternating and (b + O(1))-ranked for all

b <, a*. For the sake of a later application of Lemma 5.5, note that we can also

assume that the rank of F,« is a successor, so of the form 2% for some z, and
that for each (n) € E,«, the rank of (n) in E,» is .

Similarly, there is a computable procedure which, for each b € O, outputs a

(b + O(1))-ranked Borel code S;, such that
|Sy| ={X €2¥: X <r Hp and for all ¢ <, b, X £ H.}.

We think of S; as coding a slice of HY P. Just as for Ej, we have that for any
b <4 a*, HY P thinks that S} is well-founded.
For each b <, a*, define P® and N? so that they are alternating, and
P =185l NE|,  IN*| = |Sel N |EG).

Observe that P® and N can be both (b + k)-ranked, where k is some fixed
finite ordinal. Let h be the function which, on input b, outputs P, = P~* and
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N, = N®F if the operation b — k can be performed, and outputs a degenerate
b-ranked tree coding the empty set, if b is less than k successors from a limit
ordinal.

We claim that Decorate(Fq«, h) is completely determined in HY P. Observe
that h is a nice decoration generator. Let X € HY P. Then there is some b € O
with b <. a such that X <; Hj. Since a* is a pseudo-ordinal, b + O(1) <, a*
is satisfied. By the choice of b we have X € |Sp| = |Poyr| U |Npyi|. Therefore,
by Lemma 5.5, X has a HY P evaluation map. Therefore, Decorate(FE,-, h) is
completely determined in HY P.

Suppose for contradiction that Decorate(E,«, h) has a HY P Baire approxima-
tion. Let b € O with b <, a* and with the Baire approximation (U, V, {Dy, }new) <t
Hy. By the recursion theorem, there is an index e such that

WhHe = {p.0°1"p eV}

where Hy is used to compute V. Choose p with 0°17p € U UV, this is possible
as UUYV is dense. Let X € HY P be such that

1. 0°1"p< X

2. X <7 Hy, but X £r H, for any ¢ <, b,

3. X € D, for all n.

This is possible because the D,,, and the dense sets which need to be met to
avoid being computed by H. for ¢ <, b, are uniformly Hj-computable.

Now b + k is least such that X € |Pyyr| U |Nptx| = |Sp|. By Lemma 5.5,
X € |Decorate(Ey«, h)| if and only if X € |E,|. Because X meets each D,, and
U UV, by the definition of a Baire code, we have X € |Decorate(E,~, h)| if and
only if X € U. To establish the contradiction, it suffices to show that X € |Ej|
if and only if X € V.

Observe X € |Ep|, if and only if, for some ¢ extending p, we have 0°17¢ < X
and ¢ € WHv. But this happens if and only if for some such ¢, we have 0°17¢q €
V. -

§7. CD-PB implies HY P generics exist in w-models. The next theorem
shows that CD-PB implies the existence of hyperarithmetic generics in w-models.
In short, if M has Z but no Al(Z)-generics, there is a pseudo-ordinal a* which
M thinks is well-founded. This pseudo-ordinal can be used to construct a code
for the following subset of M, where E; denotes a code for a universal EbZ set:

U |Ey| N {X :bis least s.t. X is not generic relative to HZ }
b<.a*

After decorating this code, it becomes completely determined for every non-
Al(Z)-generic. If this code has a Baire decomposition, meeting the associated
dense sets creates a Al(Z)-generic.

THEOREM T7.1. If M is an w-model which satisfies CD-PB, then for every
Z € M, there is a G € M such that G is Al-generic relative to Z.

PROOF. Let M be the second-order part of an w-model which satisfies CD-PB.
Then by Proposition 3.6, whenever Z € M, we also have that H, bZ € M for every
be OZ.
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Case 1: Suppose M is a B-model (that is, for every tree T' € M, if M |
“T is well-founded”, then T is truly well-founded.) Let Z € M. Because {G :
G is Al(Z)-generic} is a X1(Z) set, the Z-computable tree corresponding to the
¥1(Z) statement “there is a Aj(Z)-generic” has a path in M, and that path
computes a Al(Z)-generic G. Therefore, the theorem holds when M is a -
model.

Case 2: Suppose that there is some tree S € M which M believes is well-
founded, but in reality is ill-founded. Let Z € M, and without loss of generality
assume that Z > S (without this assumption we find a A (Z®S)-generic G, but
such G is also Al(Z)-generic.) By Proposition 2.2, there is a Z-computable func-
tion which, given the index of a truly well-founded Z-computable linear order,
outputs an element of @4 which bounds its order type. Applying that function
to the Kleene-Brouwer ordering on S produces a pseudo-ordinal a* € O*# such
that Wja*) is not truly well-founded, but it has no descending sequence in M.

Relativize the definitions of <., ranked trees, Decorate, and Lemmas 5.4 and
5.5 to Z. Note that because M is hyperarithmetically closed, all the evaluation
maps provided by relativized versions of Lemmas 5.4 and 5.5 are in M.

As in the previous theorem, there is a Z-computable procedure which maps
any b € O7 to an alternating code Ej, of rank b+ O(1) such that

Bl= U 017

HY
e,r : reW,

Further, using Proposition 2.1, there are Z-computable procedures which map
each b € 07 to a code S, of rank b+ O(1) such that

|Sp| = {X € 2¢: X is not 1-generic relative to HZ,
but for all ¢ <Z b, X is 1-generic relative to HZ},
and alternating codes P, and N, of rank b such that
|Ps| = [Sp-om)| N [Ev—oml  INo] = [So—om)| N E5_omls

(and for b that are within O(1) of a limit ordinal, P, and N, are degenerate
b-ranked trees coding the empty set as before).

Let us be a little more specific and say that the code for P, is made exactly
as one would expect: it is Alternate(Py), where

Py ={\}U(0)"Sp—0a) U (1) Ey_o(1),

the root A is a N of rank b in P/, and all other ranks and labels are inherited from
their respective subtrees. We remark that because the root of P} is a N, the root
of By o1 is a U, and Ey (1) is already alternating, we have (P) 1y = Ey_o(1)-

Because the outputs of Proposition 2.1 are well-defined for all b € O, so also
are the codes P, and N;. Also, for any b <Z a*, M believes these codes to be
well-founded because they are b-ranked.

Let h be the name of the nice decorating function mapping b to (P, Np), and
consider the code T := Decorate” (E4«,h). Observe that since X in E,- is a U,
we know that A in 7' is a U.
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If T is not completely determined, let G € M be such that G does not have
an evaluation map in 7. We claim that G is A}(Z)-generic. If G is not Al(Z)-
generic, then there is some least b € OZ with b <Z a* such that G is not 1-generic
relative to H, bZ . Then we would have G € |Sp|, and therefore by Lemma 5.5, G
would have an evaluation map in 7.

If T is completely determined, then since M models CD-PB, let (U,, V;, )yer €
M be a Baire decomposition for T'. Let {D;};<., € M be the associated sequence
of dense sets as in Proposition 3.9. For any p € 2<%, define D, , = {¢ : p~q €
D;}. We claim that any G € N;,D; , is Al(Z)-generic. For this we argue that
every dense open B € A{(Z) actually contains D;, for some i,p. Let b € X

and e be such that B = WeHbZ Then Topro1))+1) = Decorate(Pb+O(1),h),
where |Pyi o) = |Ss| N |Ep|. Therefore, there is some o € T such that T, =
Decorate(Ey, h). Since Ep has a union at the root, this ¢ is a union. Let p = 0¢1.
We claim that Dy, C B, where Dy = U,,U,~,,,UV;. Let ¢ be such that p~¢ € D,.
To finish the proof, we need to show that [¢] C B.

For the remainder of this proof, any X which meets the following conditions
will be called sufficiently generic:

e X en;D;, and

e X is 1-generic relative to HbZJrO(l)

Observe that for every r € 2<%, there is a sufficiently generic X € M with
r < X. Also, observe that for all such X and all codes R which are c-ranked
for some ¢ <, b+ O(1), the second condition implies that ¢, X and R satisfy the
conditions of Lemma 5.4, and so X € |Decorate(R, h)| if and only if X € |R|.
Finally, by Proposition 3.9, for all sufficiently generic X and all 7 € T, we have
X €|T;| if and only if X € U,.

If X is sufficiently generic and p~¢ < X, then X € p~B, and so X € |Ey,
and so by Lemma 5.4, X € |Decorate(Ep, h)| = |T,|. Therefore, it is impossible
that X € V, so we conclude p~q € U,~,, for some m. Therefore, for sufficiently
generic X with p~¢ < X, we have X € [T, ~,,|.

If m = 2¢ + 1 for some ¢ <, b+ O(1), then T,~,, = Decorate(P., h). But
for any sufficiently generic X, we have X & |P.|, so this case is impossible.
Therefore, m = 2n for some (n) € Ej. It follows from the definition of Decorate
that T,,~,, = Decorate((Ep)mny, h). So for sufficiently generic X with p~q < X,
we have X € |(Eb)<n)|

Now we will use a property of the codes Ej which follows from how they are
defined at the beginning of the proof of Theorem 6.1. The code Ej was obtained
as the union of many codes Fy, . .., at whose leaves the only options are [0°17r] or
(). The code Ej was also post-processed so that it would be alternating, but while
this process can break up the first-level subtrees Fy . ,, it can never combine them
together. (See the discussion at the end of Section 2.4 for details.) Therefore,
for every (n) € Ej, there is an r such that whenever (n)~7 € E, is a leaf, its
attached clopen set is either [0°17r] or (). Fixing r associated to n = m/2 for
the m found above, we observe that an evaluation map on (Ej),) that works for
one Y € [0°17r] works for all such Y, and we conclude that |(E}) | is equal to
either () or [0°177]. It must be the latter because X € |(Ep)ny| for all sufficiently
generic X with p~¢ < X. It follows that [r] C B. Furthermore, any sufficiently
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generic X that does not extend p~r must be out of |(Ep) )|, so it must be that
[q] C [r]. Therefore, [q] C B, as desired. 4

§8. Application to the Borel dual Ramsey theorem. As an application
of Theorem 4.3, we identify a natural formulation of the Borel dual Ramsey
theorem for 3 partitions and ¢ colors (Borel-DRT}) as a principle which lies
strictly below ATRg, but all of whose w-models are closed under hyperarithmetic
reduction.

THEOREM 8.1 (Borel dual Ramsey theorem, [2]). For every Borel {-coloring
of the set of partitions of w into exactly k pieces, there is an infinite partition
p of w and a color i < ¢ such that every way of coarsening p down to exvactly k
pieces is given color 1.

Since the set of partitions of w into exactly k pieces can be coded naturally
as a Borel subset of k¥, a natural way to formulate the hypotheses of the above
theorem is roughly “Whenever there are Borel codes T1, ... T, such that for every
X € k¥, we have X € |U;<¢ T5|, ...” (See below for a precise formalization).

Therefore, the Borel dual Ramsey theorem has a natural formulation in terms
of completely determined Borel sets. In [12, 5], it was shown that a solution to
BoreI—DRTéC can in general be obtained by a two-step process:

1. Use the fact that every Borel set has the property of Baire to come up with

a Baire approximation to each color in the given coloring.
2. Apply a purely combinatorial principle CDR'I'Q€ to a coloring of (k — 1)<¥
obtainable from the Baire approximation from (1).
If we represent the coloring in the natural way described below, then CD-PB can
be used to carry out (1). It was known to Simpson (see [5]) that CDRT? follows
from Hindman’s Theorem (HT), which follows from ACA{ by [1]. Therefore,
the following natural formalization of Borel-DRT} follows from CD-PB + ACA{ .
We first give the formalization of the space of k-partitions of w, and then the
formalization of Borel—DRTi?.

DEFINITION 8.2 (Partitions of w, [5]). In RCAg, a partition of w into exactly
k pieces is a function p € k¥ such that p is surjective, and for each i < k — 1,

min{n : p(n) =i} < min{n : p(n) =i+ 1}.

A partition of w into infinitely many pieces is a surjective function p € w* which
satisfies the above condition for each i € w.

The set of partitions described above is an open subset of k“ representable in
RCA by a completely determined Borel code, as the reader can verify. (For the
case k = 3, the set in question is the union of the sets O, introduced at the
start of the proof of Theorem 8.5.) Let P53 denote this completely determined
Borel code in the case k = 3.

DEFINITION 8.3 (Formal Borel dual Ramsey theorem for 3 partitions and ¢ colors).
In RCAq, BoreI—DRTZ’ is the principle which states: Whenever Ty, ... Ty—1 are
Borel codes such that for all X € |P3|, we have X € |[{J,.,Ti|, then there is
an infinite partition p of w and a color i < ¢ such that whenever X € |Ps],
XopelTil
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We would like to say the hypotheses of the theorem imply that the {T;};<s
are all completely determined. This is not quite true (perhaps X € |T;| is not
completely determined for some X ¢ | P3|). However, a small modification of the
existing codes makes them completely determined.

LEMMA 8.4. (ACAy) Suppose that S is a completely determined Borel code and
T is a Borel code. Suppose that for all X € |S|, there is an evaluation map for
X in T. Then there is a completely determined Borel code R such that for all
X €|S|, we have

X e|T| < X €|R|.

PrROOF. Let R be obtained from T by replacing each leaf o in 1" with the
intersection of S and the clopen set coded by ¢(o) in T. If X € |S|, then an
evaluation map for X in R is obtained by starting with an evaluation map for X
in T and then filling in the evaluation map for X € |S| at all the places where S
appears in R. If X € |S¢|, an evaluation map for X in R is obtained by filling
in all the original nodes of T" with 0, filling in the evaluation map for X in S
at all the places where S appears in R, and filling in the correct values on the
remaining leaves which were copied from T

(Note: it does not work to let R be simply the intersection of S and T, because
the definition of completely determined requires that the entire evaluation map
be filled out, even if most of it is not used.) -

Tt follows that if (7)< satisfy the hypotheses of the formal Borel dual Ramsey
theorem above, they can be taken to be completely determined without loss of
generality. Therefore, the discussion preceding the formal definitions proves that
CD-PB + ACA{ | Borel-DRT; over RCA,.

The w-model which was constructed to prove Theorem 4.3 is closed under hy-
perarithmetic reduction, and therefore satisfies ACA] as well as CD-PB. There-
fore, Borel—DRT? holds in this model, while ATRy does not. This shows that the
formulation of Borel-DRT? discussed here is strictly weaker than ATRg.

On the other hand, we have the following, which essentially follows from a
more detailed version of the analysis in Section 4 of [5].

THEOREM 8.5. Let { € w with ¢ > 2. Every w-model of Borel—DRTi’ is closed
under hyperarithmetic reduction.

PRrOOF. It suffices to consider the case £ = 2. We will first define some
important subsets of 3“. For each a,b with 0 < a < b, let O, be the clopen set
given by the finite collection of strings

Oup ={o €3 :a=min{n:o(n) =1} and b = min{n : o(n) = 2}}
Then the set of partitions of w into exactly 3 pieces is given by Ps = J. 4 Oa.p-

Let M be the second-order part of an w-model M of Borel-DRT3. We first
show that M satisfies ACAg. Let A € M. Let R be the following labeled Borel
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code.t

R= |J [)Caps where Coyps=

0<a<b s>b ) otherwise.

{oa,b if A la=A,a

Then R is completely determined. For any X € 3%, there is at most one pair a, b
such that X € O, so an evaluation map for X in R may safely put zeros at
every node of R except for the root and the nodes of the distinguished subtree
Ns>5Cab,s- The leaves of that subtree can be X & A-computably filled out.
Then the root of R and the root of the subtree Ns~pCy p,s may be non-uniformly
supplied with their unique correct values.

Exactly as in the proof of [5, Theorem 4.5], we now show that for any infinite
partition p of w which is homogeneous for the coloring defined by |R|, |R¢|, the
principal function of p dominates the least modulus function for A’. For each
i, let p; = min{n : p(n) = i} (these are the minimum elements of the blocks of
p). First we claim that p is homogeneous for color R. Let s be large enough
that A, [ p1 = A’ [ p1. Let j be large enough that p; > s. Then the coarsening
of p which keeps blocks 1 and j, while collapsing all other blocks in with the
zero block, is an element of R. By similar reasoning, but now looking at the
3-partition of w obtained from p by keeping the only the ¢ and (i + 1) blocks
separate from the 0 block, we have A;Hl ' p; = A" | p;. Thus p >r A
Therefore, M = ACA,.

Now suppose that A € M and 3 -5° € O4. Suppose that for all d <p 3 - 5¢,
we have H' € M. Then we claim that Hils. € M. By a result of Jockusch [9]
discussed in more detail below, the hyperarithmetic sets are exactly those that
can be computed from sufficiently fast-growing functions. As in [5, Theorem
4.7], we construct a Borel coloring which forces any solution to BoreI—DRTg to
compute a sufficiently fast-growing function. To prove the associated Borel code
is completely determined, we need a more detailed analysis than what was given
in [5].

More specifically, Jockusch’s result has plenty of uniformity: there are com-
putable functions h and k such that for all d € O4, whenever g : w — w
dominates the increasing function

HA
fa(n) == (I)h((fi) (n),
we have
Dpa)(A®g) = H.

(To get this from the proof of [9, Theorem 6.8], apply [13, Exercise 16-98] to
conclude that the sets H 1‘14 are in fact uniformly Turing equivalent to implicitly
19 (A)-definable functions f.)

4We use standard computability-theoretic notation: for any s € N, let A’ denote {z < s :
@f’s(m) 1}, and for any X let X | s denote the string o of length s describing the characteristic

function of X on {0,...,s —1}.
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Uniformly in d € O4 and a,b,€ w, and A, there are Borel codes Cy .4 of
well-founded rank d + O(1) such that

if b >
Cona = {oa,b if b > fa(a)

0 otherwise.

The uniformity follows from the existence of h above and the A-uniformity of
producing a formula of L, ., to assess facts about HZ' (Proposition 2.1).
For each n < w, let d,, = ®.(n). Now let R be the labeled Borel code

R= |J [)Caba-

0<a<b i<a
For any X € 3%, there is at most one pair of @, b such that X € O, so as above,
any evaluation map for X in R can safely fill in zeros everywhere except for the
root of R and the distinguished subtree rooted at NM;<qCq p,q4,- This subtree has
well-founded rank d, + O(1), so the unique evaluation map on it is H (2 Loy

computable. Because H, 34 € M for all d <p 3-5°, this evaluation map exists in
M. Therefore, R is completely determined in M.

Now let p € M be any infinite partition of w which is a solution to BoreI—DRTg’
for the coloring |R|,|R°|. Define, for each 1,

p; = min{n : p(n) =i}.
Continuing to copy the proof of [5, Theorem 4.5], for every 0 < s < t, consider
the coarsening X ; of p obtained by keeping the s and ¢ blocks of p and collapsing
all other blocks to 0. Since ¢ can be chosen arbitrarily large, for every s there is
a t such that
Xs,t € ﬂ Opsmmdi
1<ps

and therefore P3 o p is monochromatic for color R, and s < ¢ implies that for
all i < ps, we have p; > f4,(ps). Therefore, p computes a sequence of functions
{gi : i € w} such that for all i and n, g;(n) > f4,(n). (Given i and n, let s be
large enough that i,n < ps, and output psy1.) Therefore, A ® p computes

@(I)k(di)(A ®gi) = @H£ = His.,

as was needed. =

We end this section with a question about robustness. The formalization of
BoreI—DRTg given above is one we find quite natural. However, another possible
way to state the hypothesis of this theorem would be “Whenever there are Borel
codes T1, ... T, such that for every X € k¥, there is an ¢ such that X € |T;], ...”

The subtle difference lies in the fact that if X € |U;<, T}, the evaluation map
for X in that code must also prove that X € |T;| or X € |T¥| for each i < ¢. In
the slight variant just mentioned, it is enough to know that for some i, X € T;
(and possibly have no information about X in the codes T for j # ¢.) This
variant does not, at least on its face, lead to any conclusion about whether, or
in what sense, any of the T; must be completely determined.

QUESTION 8.6. How robust is the given formalization of BoreI-DRTg ? In par-
ticular, is it equivalent to the variant described above?
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89. Questions. Several directions of further questions immediately suggest
themselves. Most results here concern w-models. It is not immediately clear how
to formalize the statement “for every Z, there is a Al(Z)-generic” in reverse
mathematics. Once a reasonable reverse mathematics way of formalizing these
principles is established, it would be natural to ask how these principles are
related to principles about (completely determined) Borel sets.

In the context of w-models, there are some gaps remaining. For example, we
have seen that every w-model of CD-PB models L, .-CA and the existence of
Al generics.

QUESTION 9.1. Suppose M C 2% is closed under join, satisfies L, .,-CA, and
for every Z € M, there is a G € M that is A}(Z)-generic. Does it follow that
M E CD-PB?

One way that the above question could have a negative answer would be if
CD-PB implied some theory of hyperarithmetic analysis strictly stronger than
Lusy w-CA.

QUESTION 9.2. Which theorems of hyperarithmetic analysis are implied by
CD-PB, and which are incomparable with it?

We built an w-model of CD-PB by adjoining many mutually 3i-generics.
QUESTION 9.3. Does every w-model of CD-PB contain a ¥}-generic?

Whether in w-models or full reverse mathematics, many other theorems in-
volving Borel sets may now have interesting reverse mathematics content when
considering their completely determined versions. We leave the similar analy-
sis of “Every completely determined Borel set is measurable” to future work.
We mention that the statement “Every completely determined Borel set has the
perfect set property” is equivalent to ATRy, because “Every closed set has the
perfect set property” already implies ATRy by [15, V.5.5], so here the way of
defining a Borel set does not add additional strength.

Turning now to BoreI-DRT?, we have seen that any w-model of it is closed
under hyperarithmetic reduction.

QUESTION 9.4. Is BoreI-DRT? a theory of hyperarithmetic analysis?

For any instance of BoreI—DRT? that is truly well-founded, there is a solution
hyperarithmetic in the instance. However, we do not know anything about the
complexity of solutions to non-standard instances of Borel-DRT?. In particular,
we do not know if Borel-DRT} holds in HY P.

Finally, there is the issue of robustness. There are some possible variations on
what could be considered as an evaluation map. For example, a weaker version
of an evaluation map would be a partial function f :C T — {0,1} such that
f(A) is defined; and whenever o € T is a U, and f(o) = 1, there is an n such
that f(c7n) = 1; and whenever ¢ € T isa Nand f(o) =1, for alln, c"n e T
implies f(0"n) = 1; and similarly for when f(o) = 0. Such a partial function has
a natural interpretation as a winning strategy in the game in which one player
tries to prove that a real is in the given Borel set while another player tries to
prove that it is out. We have used the longer name “completely determined Borel
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set” for our notion in order to reserve the term “determined Borel set” for this
variant. We did not investigate, but it would be interesting to know, the extent
to which the results of this paper are robust under this and other variations on
when we consider Borel set to be well-defined in reverse mathematics.
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