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ABSTRACT. We analyze the Dual Ramsey Theorem for k partitions and ¢ col-
ors (DRT?) in the context of reverse math, effective analysis, and strong re-
ductions. Over RCAp, the Dual Ramsey Theorem stated for Baire colorings
Baire—DRT’IZv is equivalent to the statement for clopen colorings ODRTL? and to
a purely combinatorial theorem CDRT?.

When the theorem is stated for Borel colorings and k& > 3, the resulting
principles are essentially relativizations of CDRT?. For each «, there is a
computable Borel code for a A2, coloring such that any partition homogeneous
for it computes §(®) or P(®=1) depending on whether « is infinite or finite.

For k = 2, we present partial results giving bounds on the effective content
of the principle. A weaker version for A9 reduced colorings is equivalent to
D% over RCAqg + IE%_1 and in the sense of strong Weihrauch reductions.

1. INTRODUCTION

This paper concerns the reverse mathematical and computational strength of
variations of the Dual Ramsey Theorem. For k& < w, let (w)* denote the set
of all partitions of w into exactly k pieces. Such a partition can be represented
as a surjective function from w to k. Thus (w)* inherits a natural topology by
considering it as a subset of k“.

Dual Ramsey Theorem ([4], [14]). For any k,{ < w, suppose we have a coloring
(W)* = U;<¢C;. If for each i < £, C; has the property of Baire, then there is a
partition p € (w)*¥ such that any coarsening of p down to exactly k pieces has the
same color.

The reason that this theorem is dual to the original Ramsey’s Theorem concerns
what objects are being colored. In the original Ramsey’s theorem, we color the
k-element subsets of w, which correspond to injective functions from k& to w. In the
Dual Ramsey Theorem, we color surjective functions from w to k.

A straightforward choice argument shows that the Dual Ramsey Theorem fails
if no regularity conditions on the C; are assumed. The theorem was first proved
for Borel colorings by Carlson and Simpson [4], and extended to colorings with
the Baire property by Promel and Voigt [14]. From the perspective of reverse
mathematics or computational mathematics, the variation in hypothesis gives us
two theorems to consider. We call them the Borel Dual Ramsey Theorem and the
Baire Dual Ramsey Theorem respectively.

Carlson and Simpson asked for a recursion-theoretic analysis of the Borel Dual
Ramsey Theorem. In order to answer this, it is necessary to choose a method for
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encoding the coloring, and one must consider the potential effects of a topologically
intricate coloring. Previous work side-stepped these issues by restricting attention
to open colorings only [12] or by focusing attention only on the main combinatorial
lemma which Carlson and Simpson used in their proof, and on its variable word
variants [12, 7, 11].

From the work of [12], we know that over RCAg, ODRT} implies RTF ™!, where
ODRT? is the restriction of the Borel Dual Ramsey Theorem to open colorings
only, and RT is the usual Ramsey’s Theorem. This provides a lower bound on
the strength of the Borel Dual Ramsey Theorem. Conversely, in unpublished work
Slaman has shown that the Borel Dual Ramsey Theorem follows from IT}-CAg
[18]. No direct implication is known between the Dual Ramsey Theorems and the
variable word theorems, because the Dual Ramsey Theorem does not require the
“words” in its solution to be finite (and by Proposition 3.15, it cannot require this),
while the proof of the Dual Ramsey Theorem from the variable word theorems uses
infinitely many sequential applications of the latter (Theorem 3.18). Overall, this
leaves a rather large gap, and we do not close it. However, we do provide significant
clarification of the key difficulties. In particular, for the first time we directly tackle
the topological aspect of the Borel version of the theorem.

1.1. Combinatorial core of the Borel Dual Ramsey Theorem. Since the
Borel version follows from the Baire version plus the additional principle “Every
Borel set has the property of Baire”, our first step is to understand the Baire
version.

To be clear, an instance of the Baire Dual Ramsey Theorem is a sequence of
pairwise disjoint open sets Oy, ...,Oy_; whose union is dense in (w)*, and a se-
quence of dense open sets {D,, }ne,,- Such an instance simultaneously represents all
colorings (w)’C = U;<¢C; for which the symmetric difference C; AQO; is disjoint from
NpD,. There may be uncountably many such colorings, because no condition is
placed on how 2¢ \ N, D,, is colored. Any solution p € (w)* to the Baire version
must have (p)* C N, D,.

In Section 3.1 we define a purely combinatorial principle CDRT? , which precisely
captures the strength of the Baire version. In the following, if p € (w)* and k < w,
let (p)* denote the set of coarsenings of p into exactly k pieces. Recalling that we
consider p as a surjective function p : w — k, let

p* :=p [ minp *(k —1).
In other words, p* is a string on alphabet k — 1, it tells us by its length what is the

smallest element of p’s last block, and it tells us how p partitions the finitely many
smaller elements into its first k — 1 blocks. Let (< w)¥~1 = {p* : p € (w)*}.

Theorem 1.1. Let k, ¢ < w. QOuver RCAy, the following are equivalent.
(1) The Baire Dual Ramsey Theorem for k partitions and £ colors.
(2) ODRTY
(3) CDRTY, which states: for every ¢ : (< w)*~* — €, there is a p € (w)* and
a color i < { such that for every x € (p)¥, c(z*) = i.

Thus we have reduced the Baire version of the theorem to a purely combinatorial
statement. The proof of the equivalence is essentially an effectivization of [14].

Aside from the results in [12], the strengths of the CDRT} statements are wide
open. We include one more result, which was known to Simpson (see [4, page 268])
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FIGURE 1. Implications over RCAgy between variants of the Dual
Ramsey Theorem considered in this paper and some related prin-
ciples. The parameter k > 4 is arbitrary.
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and subsequently rediscovered by Patey [13]: a proof of one case of the Carlson-
Simpson Lemma from Hindman’s Theorem. With minor modifications, we adapt
this proof in Section 3.2 to show that Hindman’s Theorem for ¢ colorings implies
the stronger CDRT;’. See Figure 1.1 for a summary of what is known about the
combinatorial core of the Dual Ramsey Theorem.

We close Section 3 with a self-contained proof of CDRT} from the Carlson-
Simpson Lemma (Theorem 3.18). In our proof, the only non-constructive steps are
w - (k — 2) nested applications of the Carlson-Simpson Lemma.

The earliest claim we are aware of for a proof of CDRTQ€ is in [14], where a
generalization of CDRT’KC called Theorem A is attributed to a preprint of Voigt
titled “Parameter words, trees and vector spaces”. However, as far as we can tell,
this paper never appeared. Another proof of CDRT? can be found in [19], but as a
corollary of a larger theory.

1.2. Computational strength of the Borel Dual Ramsey Theorem. In Sec-
tions 4 and 5, we consider the Borel Dual Ramsey Theorem, or Borel-DRT, from
the perspective of effective combinatorics. The behavior is different depending on
the number of pieces k in the partition, with the k& > 3 case being addressed in
Section 4 and the k = 2 case in Section 5.

When k£ > 3, given a fast-growing function f one can design an open, f-
computable coloring such that all of its homogeneous partitions compute a function
which dominates f (this was already essentially done in [12]). But if f is hyper-
arithmetic, that same coloring has an effective Borel code as a A? set. Thus by
sneaking the computation of f into an effective Borel code, we obtain a computable
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instance of BoreI—DRTg. As a result, BoreI—DRTg can be informally considered as
some kind of hyperjump of ODRTg. Formally, we have the following in Theorem
4.7.

Theorem 1.2. For every computable ordinal o > 0 and every k > 3, there is
a computable Borel code for a A% coloring ¢ : (w)¥ — 2 such that every infinite
partition homogeneous for ¢ computes 0% if o is infinite, or 0@~ if o is finite.

The preceding theorem gives a coding lower bound on the complexity of solutions
for k > 3. In contrast, we remark that the best known basis theorem for the £ > 3
case is still the following result of Slaman [18]: Every hyperarithmetic instance
of the Borel Dual Ramsey Theorem has a hyperarithmetically low solution. This
result can also be extracted from our analysis as follows. Given a Borel coloring,
there is a hyperarithmetic witness that it has the property of Baire. Use Theorem
1.1 to computably reduce this instance of the Baire Dual Ramsey Theorem to an
instance of CDRT. It is arithmetic to check whether a given partition p € (w)¥ is
a solution to a given instance ¢ of CDRT. Therefore the collection of solutions is
non-empty ©1. Applying the Gandy Basis Theorem gives the desired solution.

When k = 2, it is likewise possible to create effectively Borel instances which
correspond to hyperarithmetically computable open colorings. However, there are
two important differences with the k& = 2 case. First, ODRT% is computably true.
As a consequence, when k = 2 the Borel variant has a sharper basis theorem.

Theorem 1.3. Every A instance of Borel-DRT? has a A® solution.

This result follows from the more general Theorem 5.4. Note that the A2 in-
stance is a subset of (w)* which could be topologically intricate, while the solution
is a single A partition p € (w)*.

The second difference in the k = 2 case is that CDRT? is Weihrauch equivalent
to the infinite pigeonhole principle RT;. (Observe that an instance of CDRT% is
essentially a coloring of w.) This immediately offers lower bounds: for each n,
D} <sw BoreI-DRT?, where D} is the problem whose instances are AY colorings
¢ : w — (¢ and whose solutions are the infinite sets monochromatic for ¢. The
question is whether these could possibly be equivalences when Borel—DRT% is likewise
restricted to A? instances. We are only able to show a partial result in this direction
(Theorem 5.7).

Theorem 1.4. Let A?-rDRT3 be the restriction of Borel-DRT3 to instances ¢ which
are given by A formulas and for which ¢ is reduced, meaning that c(p) depends
only on p* for all p € (w)%. Then

(1) A°-rDRT: = D7.

(2) Over RCAq +1x0_ |, A%-rDRT3 is equivalent to DY.

1.3. Reverse mathematics and Borel sets. In Section 6, we consider problems
motivated by the reverse mathematics of the Borel Dual Ramsey Theorem. We
observe that the Borel Dual Ramsey Theorem can be obtained by composing “Every
Borel set has the property of Baire” (let us call it BP) with the Baire Dual Ramsey
Theorem. So a natural next step is to understand the strength of BP. We show
the following as a part of Theorem 6.9.

Theorem 1.5. Over RCAy, ATRy is equivalent to the following statement. For
every Borel code B, there is some point x such that x € B or x ¢ B.
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This result mainly shows that the usual definition of Borel sets, which is given
in [17] using ATR( as a base theory, really does not make sense in the absence of
ATRp. This provides an obstacle to a satisfactory analysis of BP. While BP follows
from ATRg, (Proposition 6.5), in the reversal BP formally implies ATRy only due to
the technical reason above. We leave a deeper analysis of BP and the Borel Dual
Ramsey Theorem to future work [2].

The proof of Theorem 1.5 uses a method of effective transfinite recursion, ETR,
which is available in ACAq (and possibly in weaker systems). Greenberg and Mon-
talban [8] use ETR to establish equivalences of ATR( and claim that ETR is provable
in RCAg. However, their proof of ETR overlooks an application of ¥¢ transfinite in-
duction, and in general, transfinite induction for 3¢ formulas does not hold in RCA.
While the main results in [8] continue to hold because Greenberg and Montalbdn
show the classified theorems imply ACA, without reference to ETR (and hence can
use ETR in ACA( to complete the equivalence with ATR), we have included a proof
of ETR in Section 6 to make explicit the use of transfinite induction.

In the final Section 7 we list a number of open questions.

2. NOTATION

We use w to denote the natural numbers, which in subsystems of Zs is the set
{z : x = z}, often denoted by N in the literature. Despite this notation, we do not
restrict ourselves to w-models. Second, when we refer to the parameters k and ¢ in
versions of the Dual Ramsey Theorem, we assume k and ¢ are arbitrary standard
numbers with k,¢ > 2. By a statement such as “RCAq proves BoreI—DRT]Z implies
Baire-DRT}”, we mean, for all k,¢ > 2, RCAq + Borel-DRT% — Baire-DRT}. For
many results, the quantification over k£ and ¢ can be pulled inside the formal system.
However, in some cases, issues of induction arise and we wish to set those aside in
this work.

For k < w, let k<% denote the set of finite strings over k and let £ denote the set
of functions f : w — k. As noted above, unless explicitly stated otherwise, we will
always assume that k > 2. For o € k<“, |o| denotes the length of o, and if |o| > 0,
c(0),...,0(Jo] — 1) denote the entries of o in order. For p € k¥ and o € k<“, we
write o < p if o is an initial segment of p. Similarly, if o,7 € k<% we write 0 < 7
if o is an initial segment of 7 and ¢ < 7 if ¢ is a proper initial segment of 7. We
write p [ n to denote the string obtained by restricting the domain of p to n. The
standard (product) topology on k“ is generated by basic clopen sets of the form

o] ={pek: 0 <p}

for o € k<v.

We use the following notational conventions for partitions. For k < s < w, we
use (s)* to denote the set of all partitions of s into exactly k pieces. The pieces
are also called blocks. Each such partition can be viewed as a surjective function
p: s — k, where the blocks are the sets p~1(i) for i < k. More than one surjective
function can describe the same partition, so we pick a canonical one. We say that
p:s— kis ordered if for each i < j < k, minp~*(i) < minp~!(j). We then more
formally define the k-partitions of s as

(s)* = {p € k* : p is surjective and ordered}.

We also let (< w)* denote Uy, (7)*.
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If k<s<t<wandp € (t)%, then we define (p)*¥ = {zop: x € (s)k}. In
English, if p is a partition of ¢ into exactly s pieces, (p)* is the set of ways to further
coarsen t down to exactly k pieces, so we call (p)* the set of k-coarsenings of p.

If (w)¥ = U;<¢C; and p € (w)* with (p)* C C;, then we say that p is homogeneous
for the color C;.

The set (w)* inherits the subspace topology from k“ with basic open sets of
the form [o] N (w)* for ¢ € k<¥. This topology is also natural from the partition
perspective. For example, if we considered a partition instead as an equivalence
relation R C w X w, the same topology is also generated by declaring {R : (n,m) €
R} to be clopen for each pair (n,m) € w X w.

The space (w)* is not compact since, for example, the collection of open sets
[071] for n > 1 cover (w)? but this collection has no finite subcover. However,
if o € (< w)*, then [o] C (w)* and [o] is a compact clopen subset of (w)*. To
generate the topology on (w)*, it suffices to restrict to the basic clopen sets of the
form [o] with o € (< w)k. Although the notation [0] is ambiguous about whether
the ambient space is k¥ or (w)* (or £ or (w)* for some ¢ > k), the meaning will be
clear from context.

We denote the ith block of the partition p by p~1(i) (we start counting the blocks
at 0, so the last block of a k-partition is indexed by i = k — 1). We denote the
least element of p~1(i) by u?(i). If p € (w)*, we will often have use for the string
p* =p | uP(k —1). We can also apply this notation if p € (s)* for any s > k.

Sometimes it is convenient to consider colorings of (p)* for some p € (w)“, and
then ask for a homogeneous partition ¢ € (p)*. This is not really more general than
the case we have been considering, because a coloring (p)¥ = U;¢C; corresponds
canonically to the coloring of (w)* defined by

(1) x66i<:>xop60i.

w

In this case any y € (w)* is homogeneous for {d’}z‘d if and only if y o p is homo-

geneous for {C;}i<s.

3. THE BAIRE DuAL RAMSEY THEOREM

3.1. Three versions of the Baire Dual Ramsey Theorem. We formulate
three versions of the Baire Dual Ramsey Theorem in second order arithmetic and
show they are equivalent over RCA,.

Coding colorings or sets with the Baire property in second order arithmetic is
complicated by the fact that there are 2¢ (where ¢ = 2%°) many subsets of (w)”
or k¥ with the Baire property. However, if we identify colorings which are the
same after discarding a meager set, then there are only continuum many with
the Baire property. Specifying only an equivalence class of colorings is consistent
with how theorems which hypothesize the Baire property usually work. They start
by fixing a comeager approximation to the set in question and then proceed by
working exclusively with this approximation. This classical observation motivates
our definition of a code for a Baire coloring.

Definition 3.1 (RCAg). A code for an open set in (w)F is a set O C w x (< w)k.
We say that a partition p € (w)* is in the open set coded by O (or just in O and
write p € O) if there is a pair (n,o) € O such that p € [o].

A code for an closed set in (w)* is also a set V C w x (< w)*. In this case, we
say p € (w)” is in V (and write p € V) if for all pairs (n,0) € V, p & [o].
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Definition 3.2 (RCAj). An open set O C (w)* is dense if for all 7 € (< w)F,
[T]N O # §. That is, for all 7, there is a pair (n,c) € O such that o and 7 are
comparable as strings.

Definition 3.3 (RCAg). A code for a Baire {-coloring of (w)¥ is a sequence of
dense open sets {D,, }n<. together with a sequence of pairwise disjoint open sets
{O;}i<¢ such that |J k

O; is dense in (w)".

Recall that RCAq suffices to prove the Baire Category Theorem: if {D,}n<u
is a sequence of dense open sets, then N,,«,D,, is dense. Classically, if a coloring
U;<¢C; = (w)* has the Baire property, then it has a comeager approximation given
by sequences of open sets {O;}i<¢ and {D, }n<w such that each D,, is dense and
for each p € Np<w Dy, p € C; if and only if p € O;.

We abuse terminology and refer to the Baire code as a Baire ¢-coloring of (w).
Similarly, an open ¢-coloring is a coloring (w)* = U;<,O; in which the O; are open
and pairwise disjoint.

Definition 3.4. For each (standard) k,# > 2, we define Baire-DRT}, ODRT and
CDRT¥ in RCA, as follows.

(1) Baire—DRTf: For every Baire f-coloring {O; };<¢ and {D,,},,<., of (w), there
k

is a partition p € (w)* and a color ¢ < ¢ such that for all x € (p)~,
reO; N ﬂn D,.

(2) ODRT}: For every open {-coloring (w)* = U;,0;, there is a partition
p € (w)¥ and a color i < £ such that for all z € (p)*, x € O;.

(3) CDRT}: For every coloring ¢ : (< w)*~1 — £, there is a partition p € (w)*
and a color i < £ such that for all z € (p)*, c(z*) = 1.

i<l

Our first goal is to show that the instances of CDRT} are in one-to-one canonical
correspondence with those instances of ODRT;C for which the coloring of (w)¥ is
reduced. We define a reduced coloring without considering the coding method and
note that any reduced coloring is open.

Definition 3.5. Let y € (w)* and m < k. A coloring of (y)* is m-reduced if
whenever p,q € (y)* and p | u?(m) = q | p9(m), p and q have the same color. A
coloring of (y)* is reduced if it is (k — 1)-reduced.

Note that a coloring is reduced means that the color of each partition p € (y)*

depends only on p*.
Proposition 3.6 (RCA). The following are equivalent.
(1) CDRTS.
(2) For every open reduced coloring (w)* = U;<,0;, there are p € (w)
i < ¢ such that (p)* C O;.
(3) For every y € (w)* and open reduced coloring (y)* = U;<,0;, there are
p € (y)¥ and i < £ such that (p)k C O;.
Proof. Clearly (3) implies (2). To see that (2) implies (3), fix y € (w)¥ and a
reduced open coloring (y)* = U;,0;. Define

O; ={(n,7): 7€ (<w)* and 7oy € O;}

“ and

It is straightforward to check that the coloring (w)* = Ui<55i is also reduced, and
that whenever x is homogeneous for U;,O; then x o y is homogeneous for U; -¢O;.
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To see (2) implies (1), fix ¢: (< w)*~! — £. For each i < ¢, let
0; ={(0,67(k—1)) 10 € (<w)* ! and ¢(0) = i}.

Then (w)* = U;<,O; is an open reduced coloring of (w)*, and any infinite partition
which is homogeneous for it is also homogeneous for c.

For the implication from (1) to (2), assume CDRT?7 and suppose we are given
a coloring U;¢O;. Now, for each o € (< w)¥~!, we define ¢(o) as follows. Note
that for some i < ¢, some 7 = ¢~ (k — 1), and some n, we have (n,7) € O;. Letting
(n,T,1) be the least triple with this property, we define c¢(o) = 1.

Let i < £ and p € (w)¥ be the result of applying CDRT} to c. Given z € (p)F,
we know that ¢(z*) = i. Let n,7 be the witnesses used in the definition of ¢(x™*).
Let ¢ € (w)F with ¢ = 7. Then ¢ € O;. Since O; is reduced and ¢* = 7* = x*,
x € O;. Therefore, p is homogeneous for the coloring U;<¢Oj, as required. O

It is now routine to show that the number of colors does not matter.
Proposition 3.7 (RCA,). CDRT} and CDRTS are equivalent.

Proof. Collapse colors and iterate CDRTIQc finitely many times, using Proposition
3.6. O

The next proof is essentially an effective version of an argument in [14].
Theorem 3.8 (RCA;). Baire-DRTY, ODRT} and CDRT} are equivalent.

Proof. By setting D,, = (w)* in Baire—DRT?, ODRT]Z is a special case of Baire—DRT?,
and by Proposition 3.6, CDRT’Z is a special case of ODRT’ZC . It remains to prove in
RCA, that CDRT} implies Baire-DRT}.

Let {O;}ice, {Dn}n<w be a Baire f-coloring of (w)* for which the open sets O;
are pairwise disjoint. We construct a partition y € (w)“ such that (y)* € N, D,
and U;O; restricted to (y)* is reduced. By Proposition 3.6 and CDRT?7 there is a
homogeneous z € (y)* for this open reduced coloring. Since (2)* C (y)* C N,,D,,
this partition z is homogeneous for the original Baire coloring.

First we describe the construction in a classical way, and then remark on how it
can be carried out in RCAg.

Build y by initial segments in stages, y = limgy,, starting with yo being the
empty string, and then continuing with stage s = 1 as follows. Assume that at
the start of stage s, ys_1 is an (s — 1)-partition. In stage s begin by letting 30 =
Ys—1~ (s — 1), so that yg is an s-partition. Let zg,...,z, be a list of the elements
of (s)*. For each i = 0,...7, let ¢ = z; 0y’. Let 7 € (< w)¥ be such that ¢ < 7
and T meets Ny<sDp, and U;<,O;. Then extend y’ to y*! in such a way that
x;0yitl = 7. In general there is more than one way to do this, but which way does
not matter. For concreteness, for each n > |yi| we could set yi™!(n) to be the least
m such that x;(m) = 7(n). At the conclusion of these substages we are left with
y 1. Let ys = y" 1. This completes the construction of y.

We need to justify why this construction can be carried out in RCAy. To that
end, we make the following claims in RCAy:

(1) For any ¢q € (< w)¥ and s, there is an extension 7 > ¢ which meets U;,0;
and Ny<sD,,. To see that for all s, such a 7 exists, apply XY induction.

(2) There is a function f : (< w)* x w — (< w)* with the properties above.
This follows because in RCAg, we can select the 7 with least witness.
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(3) There is a function which outputs the sequence

0 0 0
y17"'7y;17y27"'7y72n27y3a"'
This can be obtained by primitive recursion using the function f.

Therefore, y exists in RCAg. Next we show that (y)* C N, D,,. Let w € (y)* and
fix n. Let 2 € (w)* with zoy = w. Let s > n be large enough that = | s € (s)¥. Then
x | s was one of the ways to coarsen considered during stage s of the construction.
By construction, (x | s) o ys meets D,,. So x oy € D,.

Finally, we claim that the restriction of U;<,O; to (y)* is a reduced coloring.
Given if wi,wy € (y)* with w} = w}, let 1 and 3 be such that z; oy = w; and
Ty 0y = wy. Then af = x3. Let = (2)"(k — 1) and let s = |z|. Then z € (s)*
and x was considered at stage s of the construction. By construction, x o ys meets
O; for some i. Since z o y, is an initial segment of both w; and ws, it follows that
wy and wy are both in O;. Finally, as wy,ws € N, Dy, we have wy,ws € C;, as
needed. (]

Since ODRT; ' implies RT} over RCAg [12], we have the following corollary.
Corollary 3.9 (RCAq). CDRTS'! implies RT}.
Proposition 3.10. For any ¢ > 2, RCAy proves CDRT? and hence also ODRT?.

Proof. Let ¢ : (< w)t — €. Since (< w)! = {0" : n € w}, ¢ can be viewed as an
{-coloring of w. By RT;7 there is a color 7 and an infinite set X such that for every
n € X, ¢(0™) = i. Let z be the partition which has a block of the form {n} for each
n € X and puts all the other numbers in 271(0). Then z is homogeneous for c¢. [

3.2. Connections to Hindman’s theorem. In this section, we show that Hind-
man’s Theorem for ¢-colorings implies CDRT?. In [4], Simpson remarks that one
case of the Carlson-Simpson Lemma follows from Hindman’s Theorem. Ludovic
Patey showed us a proof, and the same argument gives a strong form of CDRTZ’.
We include Patey’s proof here.

Definition 3.11 (RCA(). Let Pg,(w) denote the set of (codes for) all non-empty
finite subsets of w. X C Pgy(w) is an IP set if X is closed under finite unions and
contains an infinite sequence of pairwise disjoint sets.

Theorem 3.12 (Hindman’s theorem for ¢-colorings). For every c : Ppn(w) — £
there is an IP set X and a color i < € such that ¢(F) =1 for all F € X.

Theorem 3.13 (essentially Patey [13], see also [4, page 268]). Over RCAq, Hind-
man’s theorem for £-colorings implies CDRT?. In particular, CDRT;’ s provable in
ACA{ .

Proof. Hindman’s Theorem follows from ACAa' by [3], so it suffices to prove the
first statement. Fix ¢ > 2 and assume Hindman’s Theorem for ¢-colorings. Since
Hindman’s Theorem for 2-colorings implies ACAg, we reason in ACAy. By Propo-
sition 3.6, it suffices to fix an open reduced coloring (w)3 = U;<,O; and produce
p € (w)¥ and i < ¢ such that for all x € (p)3, € O;. We write the coloring as
c¢: (w)® — £ with the understanding that c¢(z) = i is shorthand for x € O;.
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For a nonempty finite set F' C w with 0 ¢ F and a number n > max F', we let
Tp, € (w)? be the following partition.

0 ifk¢ Fandk#n
zpak) =41 ifkeF
2 ifk=n

Thus, the blocks are w — (F U {n}), F and {n}. Note that we can determine the
color ¢(xp,,) as a function of F and n and that since ¢ is reduced, if z € (w)? and
x| 47 (2) = pn | n, then c(z) = c(xpy).

The remainder of the proof is most naturally presented as a forcing construction.
After giving a classical description of this construction, we indicate how to carry
out the construction in ACAg. The forcing conditions are pairs (F, I) such that

e [ is a non-empty finite set such that 0 ¢ F|

e [ is an infinite set such that max F' < min I, and

o for every nonempty subset U of F' there is an ¢ < ¢ such that c(zy,) =1
for all n € FU I with maxU < n.

Extension of conditions is defined as for Mathias forcing: (F,1) < (F,I) if F C
FCFUTandICI.

By the pigeonhole principle, there is an ¢ < [ such that c(z1y,,) = @ for infinitely
many n > 1. For any such i, the pair ({1},{n € w:n > 1 and c(x(y},) = i}) is
a condition. More generally, given a condition (F,I) there is an infinite set T cI
such that (F U {minI},T) is also a condition. To see this, let Up,...,Us_; be
the nonempty subsets of F' U {min I} containing min 7. By arithmetic induction,
for each positive k < s, there exist colors ig,...,ix_1 < £ such that there are
infinitely many n € I with c¢(xy, ,) = i; for all j < k. (If not, fix the least k for
which the fact fails, and apply the pigeonhole principle to obtain a contradiction.)
Let ig,...,75s_1 be the colors corresponding to kK = s and let T be the infinite set
{nel:Vj<s(clzu,m) =1}

Fix a sequence of conditions (Fy,I;) > (Fs,Iz) > --- with |[Fi| = k and let
G = U, Fi- To complete the proof, we use G to define a coloring d : Pan(w) — £
to which we can apply Hindman’s Theorem. However, first we indicate why we can
form G in ACAy.

The conditions (F,I) used to form G can be specified by the finite set F', the
number m = min I and the finite sequence § € M where M = 2/l — 1 such that
if Fy,...,Fp—1 is a canonical listing of the nonempty subsets of F', then I = {n >
m:Vj < M (c(xF;n) = 06(j))}. The extension procedure above can be captured by
an arithmetically definable function f(F,m,d) = (FU{m}, m’,¢') where F U {m},
m/ and & describe the extension (F U {m},I). Because the properties of this
extension where verified using arithmetic induction and the pigeonhole principle,
both of which are available in ACAy, we can define f in ACA( and form a sequence
of conditions (Fi,my,01) > (Fa,ma,82) > --- giving G = |J,, Fi.

It remains to use G = {go < g1 < ---} to complete the proof. By construction,
for each non-empty finite subset U of G, there is color iy < ¢ such that c(zy,,) = iv
for all n € G with n > maxU. Define d : Pan(w) — £ by d(F) = ifg, .mer}. We
apply Hindman’s theorem to d to obtain an IP set X and a color ¢ < ¢. Since X
contains an infinite sequence of pairwise disjoint members, we can find a sequence
Eq, Es, ... of members of X such that max Fy < min Fjyy1. Define p € (w)¥ to be
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the partition whose blocks are p~!(0) = w — Uy {gm : m € Ey} and, for each k > 1,
p~1(k) = {gm : m € Ei}. Note that for all k > 1,

max p~ ' (k) = max{g,, : m € E,} <minp ' (k+1) = min{g,, : m € Ex11}.

It remains to verify that p and i have the desired properties. Consider any
z € (p)3; we must show that c(z) =i. Let U = 271(1) N p®(2) and let n = p®(2).
Then n = p®v"(2) and = [ n = zy,, | n, so since ¢ is reduced, c¢(z) = c(zyn).
Therefore, it suffices to show c(zy,,) = i.

We claim U is a finite union of p-blocks. Because x is a coarsening of p, x71(1) is
a (possibly infinite) union of p-blocks p~1(j1)Up~t(jo)U--- with 0 < j; < jo < ---
and n = p*(2) = minz~!(2) = minp~1(b) for some b > 2. Let j, be the largest
index such that j, < b. Since the p-blocks are finite and increasing, U = 2~ 1(1) N
p®(2) = p~ (1) U---Up~t(j,). Note that n € G (because p~1(b) # p~1(0)) and
maxU < n.

It follows that U = {g¢,, | m € F'} where F' = E;, U---UEj;, . Since our fixed
IP set X is closed under finite unions, F' € X and therefore d(F) = i. By the
definition of d, d(F) = ig,, |mer} = iv, s0 i = iy. Finally, U is a finite subset of
G,n € G and maxU < n, so ¢(xy,,) = iy =1 as required. O

Observe that this proof of CDRT? from HT produces a homogeneous p with
a special property: maxp~!(i) < minp~!(i + 1) for all 4 > 0. We show that this
strengthened “ordered finite block” version of CDRT? is equivalent to HT. However,
there is no finite block version of CDRT} for k > 3.

Proposition 3.14 (RCAg). If for every (-coloring of (< w)? there is an infinite
homogeneous partition p with maxp~1(i) < minp=1(i + 1) for all i > 0, then
Hindman’s Theorem for £-colorings holds.

~,

Proof. Given ¢ : Pgp(w) — £, define ¢ : (< w)? — € by ¢(o) = c({i < |o| : 0(i) =
1}). Let p be a homogeneous partition for ¢ with maxp~!(i) < minp=!(i + 1) for
all i > 0. The set of all finite unions of the blocks p~'(i) for i > 0 satisfies the
conclusion of Hindman’s Theorem. ]

Proposition 3.15. There is a 2-coloring of (< w)? such that any infinite homoge-
neous partition p has p~*(i) infinite for all i > 0.

Proof. For o € (< w)3, set ¢(0) = 1 if o contains more 1’s than 2’s and set c¢(o) = 0
otherwise. Let p be homogeneous for this coloring. Suppose for contradiction that
i > 0 is such that p~1(i) is finite. Let N =i + 2+ [p~1(i)| and let x = w o p where

ifn=1
ifi<n<N
ifn=N+1
otherwise

w(n) =

S W N =

Since z* has more 2’s than 1’s, ¢(z*) = 0. Now coarsen in a different way: let
h € [i + 1, N] be chosen so that the size of p~1(h) N [0, x*(3)] is minimized. Let
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Yy = z o p where

ifi<n<Nandn#h
ifn=~n

ifn=N+1
otherwise.

z(n) =

S W N =

Since at least one p-block has moved from z71(2) to y~*(1) and since y~!(2) con-
tains only the smallest p-block from z71(2), ¢(y*) = 1. So p was not homoge-
neous. O

3.3. CDRT and the Carlson-Simpson Lemma. The Carlson-Simpson Lemma
is the main technical tool in the original proof of the Borel version of the Dual
Ramsey Theorem. The principle is usually stated in the framework of variable
words, but it can also be understood as a special case of the Combinatorial Dual
Ramsey Theorem.

Carlson-Simpson Lemma (CSL(m, {)). For every coloring ¢ : (< w)™ — ¢, there
is a partition p € (w)¥ and a color i such that for allx € (p)™*!, if p=1(j) C xil( )
for each j < m, then c(z*) = i.

The condition p~*(j) C z7!(j) for j < m captures those x € (p)™*! which
keep the first m many blocks of p distinct in x. Therefore, CSL(m, ¢) is a special
case of CDRT}"™!. Two related principles, OVW(m, ¢) and VW(m,£) have also
been studied (see [12, 7, 11]). We do not deal with these principles, but it may
be useful to note that VW(m,¢) is the strengthening of CSL(m,¢) which requires
each nonzero block p~1(j) to be finite, and OVW(m, f) is the further strengthening
which requires max p~1(j) < mmp’l(] +1) for all 5 > 0.

In Proposition 3.16, we give three equivalent versions of the Carlson-Simpson
Lemma. The version in Proposition 3.16(2) is (up to minor notational changes
which are easily translated in RCAg) the statement from Lemma 2.4 of Carlson and
Simpson [4].

Proposition 3.16 (RCAq). The following are equivalent.
(1) CSL(m,¥?).

(2) For each coloring ¢ : (< w)™ — £, there is a partition p € (w)*¥ and a color i
such that for all j < m, p(j) = j and for all x € (p)™*L, if p~1(j) C 7 1(j)
for each j < m, then c(z*) =i.

(3) For each y € (w)” and open reduced coloring (y)™ ™ = U;<,0;, there is a
partition p € (y)* and a color i such that for all j < m, y~1(j) C p~1(4)
and for all x € (p)™ L, if p~1(j) C a7 1(j) for each j < m, then x € O;.

Proof. (2) implies (1) because CSL(m, £) is a special case of (2). The extra condition
n (2) that p(j) = j for j < m says that the partition p does not collapse any of the
first m-many blocks of the trivial partition defined by the identity function. The
equivalence between (2) and (3) is proved in a similar way to Proposition 3.6.

It remains to prove (1) implies (2). Fix an ¢-coloring ¢ : (< w)™ — £. Define
¢:(<w)™ = Lbyélo) =¢(0°17 -~ (m—1)"0). Apply CSL(m, £) to ¢ to get
P € (w)¥ and i < £ such that for all 7 € (p)™ T, if p~1(j) C Z71(j) for all j < m,
then ¢(z*) = 1.
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Let p € (w)¥ be the partition defined by

() = J ifj<m
PTG -m) itiem
We claim that p satisfies the conditions in (2) for the coloring ¢ with the fixed color
i. Fix x € (p)™*! such that p~1(j) C 27 1(j) for all j < m. We need to show that
¢(z*) = i. Since z does not collapse any of the first m-many p-blocks, z(j) = j
for all j < m. Define & € (p)™*! by Z(j) = x(j + m). Then p~1(j) C z71(j) for
all j < m. Therefore, é(Z*) = i. Now, z* = 0717 ...7 (m — 1)"&*. Therefore,
c(x*) = é(&*) = i, as required to complete the proof that (1) implies (2). O

Let y € (w)* and (y)* = U;<¢C; be an m-reduced coloring for some 1 < m < k.
We define the induced coloring (y)™' = U;,C; as follows. For § € (y)™*,
G € C; if and only if ¢ € C; for some (or equivalently all) ¢ € (y)* such that
G ui(m) = q | p9(m). This induced coloring is a reduced coloring of (y)™*! and
therefore we can apply CSL(m,¢) to it.

Our proof of CDRT? from the Carlson-Simpson Lemma will use repeated appli-

cations of the following lemma, which is proved using w many nested applications
of CSL(m, ?).

Lemma 3.17. Fiz 1 <m < k and y € (w)*. Let (y)* = U;<C; be an m-reduced
coloring. There is an x € (y)* such that the coloring restricted to (z)* is (m — 1)-
reduced.

Proof. Fix an m-reduced coloring (y)¥ = U;,C;. We define a sequence of infinite
partitions x,,,Tm41,--- starting with index m such that z,, = y and 441 is a
coarsening of x, for which z,71(j) C z,y1 1(j) for all j < s. That is, we do not
collapse any of the first s-many blocks of the partition x, when we coarsen it to
Zs+1. This property guarantees that the sequence has a well-defined limit z € (w)*.
We show this limiting partition x satisfies the conclusion of the lemma.

Assume x5 has been defined for a fixed s > m and we construct xs41. Set

20 = z,. Let 0p,...,0, be a list of the elements of (s)™. We define a sequence of
coarsenings zl,..., a7 and set w541 = a7.

Assume that 27 has been defined. Define

L, )oi(n) ifn<s
(n){m—i—(n—s) ifn>s’

and let w! = a; oxJ. That is w! collapses the first s-many blocks of 7 into m-many
blocks in the j-th possible way and leaves the remaining blocks of 27 unchanged.
Since w? is a coarsening of y, the coloring U;,C; is also an m-reduced coloring of
(w?)*. Let (w!)™+ = U;,C; be the induced coloring. This coloring is reduced, so
let i/ < ¢ and 27 € (w?)* be the result of applying CSL(m, () as stated in Proposition
3.16(3). Then 2J leaves the first m blocks of w! separate, and any coarsening of
2J into at least m + 1 pieces receives color i/, provided the first m blocks are left
separate.

To define 2771, we want to “uncollapse” the first m-many blocks of 2J to reverse
the action of a;' in defining w?. Since w! collapsed the first s-blocks of 2 to m-

many blocks and since 2J is a coarsening of w?, if zJ(u) < s, then 27 (u) < m. We
define 27! by cases as follows.
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(1) If 23 (u) < s, then 31 (u) = 27 (u). _
(2) If x@(u) > s and 27 (u) = a < m, then oI (u) = 2 (u? (a).
(3) If zZ(u) > m, then It (u) = 2 (u) + (s — m).

Below we verify that zJ*! is an infinite partition coarsening z? which does not
collapse any of the first s-many blocks of #4. This completes the construction of
22! and hence of 4, and x.

We verify the required properties of 271, By (1), xéil(a) C xg'“fl(a) for all
a < s, so we do not collapse any of the first s-many blocks of 27 in 4+, There is no
conflict between (1) and (3) because 27 (u) < s implies 27 (u) < m. Furthermore, (3)
renumbers the zJ-blocks starting with index m to zZ*1-blocks starting with index
s without changing any of these blocks. Therefore, ™! is an infinite partition.

In (2), we handle the case when the z?-block containing u is not changed by
w (except to renumber its index) but is collapsed by 2J into one of the first m-
many 2zJ-blocks. In this case, u*(a) = pu®(b) for some b < s and we have set
It (u) = b. Tt is straightforward to check (as in the proof of Theorem 3.8) that
2J T is a coarsening of xJ and that o o 2™ = 2J.

To complete the proof, we verify that the restriction of U;-,C; to (x)* is (m—1)-
reduced. Fix p € (z)* and we show the color of p depends only on p | uP(m — 1).

Let ¢ € (w)“ be the unique element with p = go x, and let 0 = ¢ [ p%(m — 1).
Then o™ (m — 1) € (s)™ for some s, and

plpP(m—1)=0co (x| p*(s—1)).

During stage s and afterward, the first s blocks of s are always kept separate.
Therefore, the above equation remains true when z is replaced with 2771, where j

is the unique index such that o; = 0. Therefore, p is a coarsening of cr;' o:v‘;Jrl

and p keeps the first m blocks of zJ separate. Therefore, the color of p is i,
the homogeneous color obtained when we applied CSL(m, ) to obtain zJ. This
completes the proof that the restriction of U;,C; to (x)* is (m—1)-reduced because
the indices s and j in zJ are determined only by p | puP(m — 1). O

= I
= 2z

We end this section with the proof of CDRT.
Theorem 3.18. For all for k > 2 and all ¢, CDRTIZC holds.

Proof. For k = 2, CDRT’; follows from the pigeonhole principle as in Proposition
3.10. Now assume k > 3. Consider CDRT;€ in the form given in Proposition 3.6.
Let y € (w)¥ and (y)* = U;<,O; be an open reduced coloring. These satisfy the
assumptions of Lemma 3.17 with m = k — 1. After k — 2 applications of Lemma
3.17, we obtain z € (y)* such that the restriction of U;<,O; to (z)* is 1-reduced
and hence the color of p € (z)* depends only on p | pP(1). Since the numbers
n < pP(1) must lie in p~1(0), the color of p is determined by the value of u?(1).
By the pigeonhole principle, there is an infinite set X C {u*(a) : @ > 1} and a
color i such that for all p € (z)*, if uP(1) € X, then p € C;. It follows that for any
z € ()% such that p*(a) € X for all a > 1, (2)¥ C C; as required. O

It is interesting to note that the only non-constructive steps in this proof are the
w - (k — 2) nested applications of the Carlson-Simpson Lemma.
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4. THE BOREL DUAL RAMSEY THEOREM FOR k > 3

In the next two sections we consider the Borel Dual Ramsey Theorem from the
perspective of effective mathematics. We define Borel codes for topologically X%
subsets of (w)* by induction on the ordinals below w;. Let L be some countable

set of labels which effectively code for the clopen sets (), (w)* and [o] and [o] for
o€ (<w)k.

Definition 4.1. We define a Borel code for a 0 or IIY set.

e A Borel code for a £3 or a TIJ set is a labeled tree T consisting of just a
root A in which the root is labeled by a clopen set from L. The Borel code
represents that clopen set.

e For a > 1, a Borel code for a X9 set is a labeled tree with a root labeled
by U and attached subtrees at level 1, each of which is a Borel code for a
E%n or H%” set A,, for some 3, < a. The code represents the set U, A,,.

e For a > 1, a Borel code for a TIO set is the same, except the root is labeled
N. The code represents the set N, A,.

For o > 1, a Borel code for a AY set is a pair of labeled trees which encode the
same set, where one encodes it as a X0 set and the other encodes it as a II9 set.

The codes are faithful to the Borel hierarchy in the sense that every code for a
30 set represents a X0 set and every X0 set is represented by a Borel code for a
30 set. There is a uniform procedure to transform a Borel code B for a XY set A
into a Borel code B for a II? set A: leave the underlying tree structure the same,
swap the U and N labels and replace the leaf labels by their complements.

Observe also that a code for a 3¢ set essentially agrees with the definition of
a code for an open set in Definition 3.1 (up to a primitive recursive translation
mapping elements of w x (< w)* to leaves of a ¢ code, and mapping each leaf of a
39 code to an element or sequence of elements of w x (< w)*). The one difference
is that we must include a leaf label of () in the definition of a Borel code, so that
the empty set has a X¢ code. Having included ) as a label, we also include (w)” to
keep complementation effective.

We recall some notation from hyperarithmetic theory. Let O denote Kleene’s
set of computable ordinal notations. The ordinal represented by a € O is denoted
lalo, with [1|o =0, [2%]o = |a|o + 1, and |3 - 5°|0 = sup, [pc(j)|o. The H-sets are
defined by effective transfinite recursion on O as follows: Hy = (), Hea = H), and
H3.5a = {(i,j) | i € Hy,(;)}- The reader is referred to Sacks [16] for more details.
To use oracles that line up better than the H-sets do with the levels of the Borel

hierarchy, define
H, iflalo <w
00 =

Hsa  otherwise.

If lalo = |blo = a, then @) =1 D), so we sometimes just write (o) in that
situation. As usual, w¢® denotes the least noncomputable ordinal.

Recall the standard effectivizations of the notions described above. We say that
a Borel code B is computable if it is computable as a labeled subtree of w<“. We say
B is effectively X0 (respectively effectively I19) if the root is labeled U (respectively
N) and additionally there is a € O with |a|o = «, and a computable labeling of the
nodes of B with notations from {b: b <o a}, such that the root is labeled with a
and each node has a label strictly greater than all its extensions.
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It is well-known that an open set of high hyperarithmetic complexity can be
represented by a computable Borel code for a ¥ set, where a is an appropriate
computable ordinal. In the following proposition, we use a standard technique to
make this correspondence explicit. Fix an effective 1-to-1 enumeration 7, for the
strings 7 € (< w)k.

Proposition 4.2. There is a partial computable function p(x,y) such that p(a, e) is

defined for alla € O and e € w and such thatifa € O and R = |J{[r,] : n € Wew(a)},
then ®p(q.c) is a computable Borel code for R as a Eg_H set, where a = |alo.

Proof. We define p(a,e) for all e by effective transfinite recursion on a € O. Let

®,(1,e) be a Borel code for the open set R = [J{[7,] : n € W}

For the successor step, consider R = | J{[r,] : n € Wf”““}. Each set which is X9

0 (2a)

in (20 is B9 in 04 and for such sets, we can effectively pass from a Z(l) index

to a Zg’m(‘” description. Specifically, uniformly in e, we compute an index e’ such
that for all oracles X, ®¥ (z,y) is a total {0, 1}-valued function and

n e WX if and only if 3tVs > t (®X(n,s) = 1).

Let Ry = U{[rn] : 3s > t(@gf“) (n,s) =0)}. Ry 2 Ry 2 --- is a decreasing sequence
of sets such that x ¢ R if and only if V¢ (z € R;). Therefore, R = U;R;. Each set R;
can be represented as Ry = |J{[mn] : n € Wg“) }, where e; is uniformly computable
from e and t. Applying the induction hypothesis, we define p(2%,e) to encode a
tree whose root is labeled by a union and whose t-th subtree at level 1 is the Borel
code representing the complement of @, ).

0
For the limit step, consider R = (J{[rn] : n € W.®*"}. Uniformly in e, we
construct a sequence of indices e; for ¢ € w such that for all oracles X, @é (2)
converges if and only if ®X(x) converges and only asks oracle questions about
. k3 0 [3
numbers in the first ¢ many columns of X. Let Ry = [ J{[rn] : n € WS =tiealiny
and note that R = U, R;. We can effectively pass to a sequence of indices e} such
(] . . . .
that Ry = U{[r] : » € W, “*“”}. By induction, each p(pq(t),€}) is the index for
-t
a computable Borel code for R; as a ngdm set, so we may define p(3 - 5%, ¢) to be
the index of a tree which has U at the root and P@p(pa(t),e;) as its subtrees. Since

2#4(t) < 3.5% for all ¢, the resulting Borel code has the required height. (I

To force the Dual Ramsey Theorem to output computationally powerful homo-
geneous sets, we use the following definition and a result of Jockusch [10].

Definition 4.3. For functions f, g : w — w, we say g dominates f, and write g = f,
if f(n) < g(n) for all but finitely many n.

Theorem 4.4 (Jockusch [10], see also [15, Exercise 16-98]). For each computable
ordinal o, there is a function f, such that fo =7 0oy and for every g = fo, we
have (o) <t g.

In Theorem 4.7, we use these functions f, to show that for every computable
ordinal «, there is a computable Borel code for a set R C (w)? such that any
homogeneous partition p € (w)¥ for the coloring (w)® = RU R computes D(a)-
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Theorem 4.5. Let A be a set and fa be a function such that A =t fa and for every
g = fa, we have A <r g. There is an A-computable clopen coloring (w)> = RUR
for which every homogeneous partition p satisfies p >7 A.

Proof. Fix A and f4 as in the statement of the theorem. Without loss of generality,
we assume that if n < m, then fa(n) < fa(m). For z € (w)3, let a; = p®(1) and
by = p%(2). Let Opp ={z € (w)? 1 ay, =aAby =b}. Set R={x € (w)*: fala,) <
b.}. Since R = J{On.m | fa(n) <m} and R = J{Opnm | fa(n) > m} both R and
R are A-computable open sets.

Claim. 1f p € (w)“ is homogeneous, then (p)* C R.

It suffices to show that there is an z € (p)® with € R. Let u = pP(1). Because
p has infinitely many blocks, there must be some i with p? (i) > f(u). Consider the
partition x = w o p, where w(1) = 1,w(i) = 2, and w(m) = 0 for all other m. Then
since a; = u and b, > f(u), we have x € (p)® with f(a;) < b, so z € R.

Claim. If p € (w)* is homogeneous, then A <p p.

Fix p and let g(n) = pP(n + 2). Since g is p-computable, it suffices to show
g = fa. Because n < pP(n+1) and f4 is increasing, we have fa(n) < fa(u?(n+1)).
Therefore, to show g = fa, it suffices to show fa(u?(n+1)) < pP(n+2) = g(n).

Let z,, € (p)? be defined by z,, = w,, op, where w,,(n+1) = 1,w,(n+2) = 2, and
wp(m) = 0 for all other m. Note that a,, = pP(n+1) and b, = puP(n+2). By the
previous claim, z,, € R, 80 fa(as,) < by, . In other words, fa(u?(n+1)) < p?(n+2)
as required. 0
Corollary 4.6. For each k > 3 and each recursive ordinal o, there is an (Z)(
computable clopen set R C (w)¥ such that if p € (w)* is homogeneous for (w)*
RUR, then Doy <t P

Proof. For k = 3, this corollary follows from Theorems 4.4 and 4.5. For k > 3, use
similiar definitions for R and R ignoring what happens after the first three blocks
of the partition. O

a)”

Theorem 4.7. For every recursive ordinal o, and every k > 3, there is a com-
putable Borel code for a A% | set R C (w)* such that every p € (w)* homogeneous
for the coloring (w)* = RUR computes (Z)(a).

Proof. Let R, R be the Q)(a)-computable clopen sets from the previous corollary. By
Proposition 4.2, both R and R have computable Borel codes as %0 41 subsets of
(w)*. Therefore, R has a computable Borel code as A, set. By the previous
corollary, if p is homogeneous for (w)* = RU R, then p >7 (o), as required. (]

For a = 1, Theorem 4.7 says there is a AY clopen set R C (w)? such that R
and R have computable Borel codes as %9 sets (and hence as AY sets) and any
homogeneous partition for (w)® = RU R computes ('.

5. THE BOREL DuAL RAMSEY THEOREM FOR k = 2

5.1. Effective Analysis. We consider the complexity of finding infinite homoge-
neous partitions for colorings (w)? = RU R as a function of the descriptive com-
plexity of R and/or R. We begin by showing that if R is a computable open set,
there is a computable homogeneous partition.
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Theorem 5.1. Let R be a computable code for an open set in (w)?. There is a
computable p € (w)“ such that (p)> C R or (p)* C R.

Proof. If there is an n > 1 such that [0"] N R = (), then the partition = € (w)“
with blocks {0,1,...,n},{n + 1}, {n + 2},... satisfies (z)> C R. Otherwise, for
arbitrarily large n there are 7 > 01 with [7] C R, and hence there is a computable

sequence Ty, Ta, ... of such 7 with 0° < 7;. Computably thin this sequence so that
for each 4, 017! < 7;,;. The partition & with blocks 2~'(i) = {j : 7:(j) = 1} for
i > 0 satisfies (z)? C R. O

To extend to sets coded at higher finite levels of the Borel hierarchy, we will need
the following generalization of the previous result.

Theorem 5.2. Let R be a computable code for an open set in (w)? such that
RN[0"] # 0 for all n. Let {D;}i<w be a uniform sequence of computable codes for
open sets such that each D; is dense in R. There is a computable x € (w)* such
that (x)? C RN (N;D;).

Proof. We build z as the limit of an effective sequence 79 < 71 < -+ with 75 € (<
w)**1. We define the strings 75 in stages starting with 79 = (0) which puts z(0) = 0.
For s > 1, we ensure that at the start of stage s + 1, we have [0 o 75] C R for all
o € (s+1)%2. That is, the open sets in (w)? determined by each way of coarsening
the s + 1 many blocks of 75 to two blocks is contained in R.

At stage s+ 1, assume we have defined 75 € (< w)*T!. If s > 1, assume that for
all 0 € (s +1)?, [co7s] C R. Let 0g,...,0n,—1 list the strings o € (s +2)2. We
define a sequence of strings 79 < -+ < 7Ms and set 7,41 = 7M.

We define 70 to start a new block as follows. Since [07!] N R # 0, we effectively
search for v, € (< w)? such that 0/™ < v, and [y,] C R. Since v, € (< w)?, there
is at least one m < |v,| such that v,(m) = 1. Define 70 with |70| = |s| by

Ts(m) if m < |75
(m)=4 s+1 if~s(m)=1 (and hence m > |7|)
0 if m > |75] and y5(m) = 0.

Note that 75 < 72, and that [0 0 70] C R for all o € (s + 2)2. To see the latter,
let j be least such that o(j) = 1 and consider two cases. If j < s+ 1, then
o] s+ 1€ (s+1)% and the conclusion follows by the induction hypothesis. If
j=s+1, then co7) =1,.

We continue to define the 77 strings by induction. Assume that 77 has been
defined and consider the j-th string o; enumerated above describing how to collapse
(s 4+ 2) many blocks into 2 blocks. Since 70 < 77, we have o, 070 < ¢j o 77 and
hence [0, o 7J] C R. Because Ny, <s1+1D,, is dense in R, we can effectively search for
a string 07 € (< w)? such that o o 77 <67 and [67] C Ny<s541Dy. To define 7711,
we uncollapse 67. Let j* be the least number such that o;(j*) = 1. Define

ri(m) if m < |7

It (m) = ¢ j* if m > |77 and §7(m) = 1

0 if m > |7Z] and 62(m) =0
It is straightforward to check that 77 < 77+ and that 007! = §J. This completes
the construction of the sequence 7'2 < ... =< TSJV[S and of the computable partition

x. It remains to show that if p € (z)?, then p € R and p € Nye, Dy, Fix p € (2)?
and let w € (w)“ be such that wox = p. Let sg be least such that w(sg + 1) = 1.
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Claim. p € R.

Let o = (0%)71, so that o < w. At stage so + 1, we defined 7 < z with the
property that [0 o070 ] C R. Since 0 o 70 < p, we have p € R.

Claim. p € NpewDy.

Fix k € w and we show p € Dy. Let s = max{k, so}. Consider the action during
stage s+1 of the construction. Let ¢ = w | (s+2). Then o € (s+2)?, so let j be such
that o = 0. We defined 6] and 7J*" such that oo7J*! = 6] and [0]] C Ny<si1Dn,
so in particular, [65] € Dy. Since 77! < x, we have 6] = g 07/t < p, so p € Dy,
as required. O

The next proposition is standard, but we present the proof because some details
will be relevant to Theorem 5.4. In the proof, we use codes for open sets as in
Definition 3.1.

Proposition 5.3. Letn € w and let A C 2% be defined by a Z%ﬂ predicate. There
are a AY | code U for an open set in (w)?, a A, code V' for an open set in (w)?
and a uniformly A?L—‘rl sequence (D; : i € w) of codes for dense open sets such that
UUV is dense and for all p € NiewD;, if p € U, thenp € A and if p € V then
p & A. Furthermore, the A, and AY , indices for U, V and (D; : i € w) can be
obtained uniformly from a E?L_H index for A.

Proof. We proceed by induction on n. Throughout this proof, o, 7, p and é denote
elements of (< w)?. In addition to the properties stated in the proposition, we
ensure that if (m,o) € U (or V) and 7 > o, then there is a k such that (k,7) € U
(or V respectively). Thus, if U N [o] # 0, then there is (k,7) € U with ¢ < 7.

For n = 0, we have X € A < 3k 3Im P(m, X | k) where P(z,y) is a ITJ predicate.
Without loss of generality, we assume that if P(m, X [ k) holds, then P(m/,Y | k')
holds for all ¥ > k, m' > m and Y € 2% such that Y | &k = X | k. Let
U= {{n,o): Plo,n)}, V= {(0,0) : VaV7 = o (=P(r,z))} and D; = (< w)? for
1 € w. It is straightforward to check these codes have the required properties.

For the induction case, let A C 2% be defined by a £ 1o predicate, so X € A &
JkP(X,k) where P is a 19, predicate. For k € w, let Ay = {X : =P(X,k)}.
Apply the induction hypothesis to Ay, to fix indices (uniformly in k) for the A% 11
codes Uy, and (D; j, : ¢ € w) and for the A9L+2 code Vj, so that if p € N, D; i, then
p € Uy implies =P (k,p) and p € V}, implies P(k,p). Let

U={{{k,m),o): (m,o) € V}} and
V ={(0,0) : VkV7 = 0 3Im3p = 7 (m, p) € Uy}

Uis a A, code for UpVj, and V is a A% 4 code such that (m,o) € V if and
only if every Uy is dense in [0]. We claim that U UV is dense. Fix o and assume
Unlo] =0, so Vi N[o] =0 for all k. Since Uy, UV} is dense, U N [7] # 0 for all
7> o and all k, so (0,0) € V.

For i = (a;,b;), define D; = Dy, 5, N (U; UV;). D; has a A, code as a dense
open set and the index can be uniformly computed from the indices for U;, V; and
Dy, ;. Furthermore, if p € N;D; then p € N; ;. D, and p € N(U U Vi,).

Assume that p € N;D;. First, we show that if p € U, then p € A. Suppose
p € U = UV, and fix k such that p € V. Since p € N;D;j, for this fixed k, p & Ay,
by the induction hypothesis. Therefore, P(k,p) holds and hence p € A.
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Second, we show that if p € V then p ¢ A. Assume p € V and fix (0,0) € V
such that o < p. It suffices to show —P(k,p) holds for an arbitrary k € w. Since
p € N;D;, we have p € U, UV}, and p € N;D; . If p € Uy, then —P(k,p) holds by
induction and we are done. Therefore, suppose for a contradiction that p € V. Fix
(0,7) € Vi, such that o < 7 and 7 < p. Since (0,0) € V and o < 7, there are p = 7
and m such that (m, p) € Uy, and therefore [p] C U, N V. This containment is the
desired contradiction because g € [p] NN, D; ;, would satisfy ¢ € Ay, and ¢ € Ax. O

Theorem 5.4. For every coloring (w)?> = RU R such that R is a computable code
for a X0, set, there is either a 0 -computable x € (W)~ which is homogeneous
for R or a 0"V _computable x € (w)® which is homogeneous for R.

Proof. Fix R and fix a 119 ; predicate P(k,y) such that for y € (w)?, y € R &
3k P(k,y). Let U, Vi and (D, : i € w) be the codes from Proposition 5.3 for
R ={y:-P(y,k)}. Let U = UpVi, V = U{[o] : Vk Uy, is dense in [o]} and D;,
i € w, be the corresponding codes for R. We split non-uniformly into cases.

Case 1: Assume V is dense in [0°] for some fixed £. We make two observations.
First, U is disjoint from [0¢]. Therefore, each V4 is disjoint from [0¢] and hence each
Uy, is dense in [0¢]. Second, suppose y € (Mix Dik) N (N Ug)- For each k we have
y € N;D;  and y € Uy, so Vk —~P(k,y) holds and hence y € R.

We apply Theorem 5.2 relativized to )™ to the computable open set O = [0]
(which has nonempty intersection with [07] for every j) and the §(™-computable
sequence of codes D; ; and Uy, for i,k < w. By the first observation, each coded
set in this sequence is dense in O. Therefore, there is a ((")-computable z € (w)¥
such that (z)2 C [09) N (N; . Di.k) N (N, Uk). By the second observation, (z)?> C R
as required. 7

Case 2: Assume V is not dense in [0™] for any m. In this case, since U UV is
dense, we have U N [0™] # () for all m. We apply Theorem 5.2 relativized to §(*+1)
to the §(™+1_-computable open set U and the #("tY-computable sequence of dense
sets D; for i € w to obtain an (" *-computable z with (z)2 CU N (N, D;) C R
as required. ([

We end this section by showing that the non-uniformity in the proof of Theorem
5.1 is necessary.

Theorem 5.5. For every Turing functional A, there are computable codes Ry
and Ry for complementary open sets in (w)? such that AT®R1 s not an infinite
homogeneous partition for the reduced coloring (w)? = Ro U Ry.

Proof. Fix A. We define Ry and R; in stages as Ry s and R . Our construction

. . . . Ro,s®R1 s . .
proceeds in a basic module while we wait for A" e ¢ provide appropriate com-

putations. If these computations appear, we immediately diagonalize and complete
the construction.

For the basic module at stage s, put 0%T'1 € Ry s and 0%721 € Ry 5. Check

whether there is a 0 < k < s such that A ®™<(j) = 0 for all i < k and

A§°’5®R1’5(k) = 1. If there is no such k, then we proceed to stage s + 1 and
continue with the basic module.

If there is such a k, then we stop the basic module and fix ¢ < 2 such that
0F1 € R; s. (Since k < s, we have already enumerated 0F1 into one of Ry s or Ry s
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depending on whether k is even or odd.) We end the construction at this stage and
define R; = Ri,s and Ri_; = Rl—i,s U {Otl | 25 +2 < t}.

This completes the construction. It is clear that Ry and R; are computable
codes for complementary open sets and (w)? = RyU R; is a reduced coloring. If the
construction never finds an appropriate value k, then Afo®E1 ig not an element of
(w)* and we are done. Therefore, assume we find an appropriate value k at stage
s in the construction. Fix i such that 0%1 € R; s and assume that p = ARo®I g
a element of (w)“. We show p is not homogeneous by giving elements qo, q1 € (p)?
such that ¢o € R; and ¢1 € Ry_;.

By construction, 0¥1 < p. Let ¢y € (p)? be any coarsening with 0%1 < go Then
qo € R; because [0F1] C R;.

On the other hand, since p € (w)*, there are infinitely many p-blocks. Let n be
least with ;”(n) > 25+ 2. Let ¢, € (p)? be any coarsening for which ¢; € [0*"(M1].
Since pP(n) > 2s + 2, we put 0+ ("1 € Ry_;, so q1 € Ry_; as required. O

5.2. Strong reductions for reduced colorings. In this section, we think of
BoreI—DRTg as an instance-solution problem. Such a problem consists of a collec-
tion of subsets of w called the instances of this problem, and for each instance, a
collection of subsets of w called the solutions to this instance (for this problem). A
problem P is strongly Weihrauch reducible to a problem Q if there are fixed Tur-
ing functionals ® and ¥ such that given any instance A of P, ®” is an instance
of Q, and given any solution B to ®4 in Q, ¥” is a solution to A in P. There
are a number of variations on this reducibility and we refer to the reader to [6]
and [9] for background on these reductions and for connections to reverse math-
ematics. In this paper, we will only be interested in problems arising out of IT3
statements of second order arithmetic. Any such statement can be put in the form
VX (o(X) = FYYP(X,Y)), where ¢ and 1 are arithmetical. We can then regard
this as a problem, with instances being all X such that ¢(X), and the solutions
to X being all Y such that #(X,Y"). Note that while the choice of ¢ and ¥ is not
unique, we always have a fixed such choice in mind for a given IT} statement, and
so also a fixed assignment of instances and solutions.

A reduced coloring (w)? = Ry U R; is classically open and the color of p €
(w)? depends only on pP(1). When Ry and Ry are codes for open sets, there is
a homogeneous partition computable in Ry & Ri, although by Theorem 5.5, not
uniformly. We consider the case when the open sets Ry and R; are represented by
Borel codes for ¥ sets with n > 2.

AY-rDRT3 is the statement that for each reduced coloring (w)? = RoU R; where
Ry and R; are Borel codes for £ sets, there exists an x € (w)“ and an i < 2 such
that (x)? C R;. In effective algebra, this statement is clear, but in RCAq, we need
to specify how to handle these codes.

Recall that a Borel code for a X0 set is a labeled subtree of w which we
write as (B, ) to specify the labeling function ¢. For a leaf o and a partition p,
we write p € ¢(o) if p is an element of the clopen set coded by ¢(0), and we write
(o) = [7] to avoid specifying a coding scheme.

In reverse mathematics there are two ways that membership in a 39 set could be
discussed. The evaluation map method works for arbitrary « and requires a strong
base theory. This method will be discussed in the next section. The wvirtual method
works only for finite .. For each n < w, there is a fixed %0 formula n(B, ¢, p) such

<n+1
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that if (B, ) is a Borel code for a X set and p € (w)?, then n(B, ¢, p) says p is in
the set coded by (B, ). In this section we use only the virtual method.

The formula is defined as follows. We begin by defining formulas g (o, B, ¢, p)
for 1 < k < n by downward induction on k. For o € B with |o| =k, Bx(0, B, »,p)
says that p is in the set coded by the labeled subtree of (B, ) above o. Since any
o € B with |o] = n is a leaf, 8, (0, B, ,p) is the formula p € p(0). For 1 < k < n,
Bi(o, B, @, p) is the formula

(plo) =U = a) A(p(o) =N = af) A (p(0) € L — aF), where
ag(o,B,p,p)is 3T € B(O’ <TA|T|=k+1 /\Bk_H(T,B,ga,p))
al (o, B,p,p) is V7 € B((o <TA|lT|=k+1) > ﬁk+1(T7B7g0,p))
and af (o, B, ¢, p) is p € ¢(0).
The formula (B, ¢, p) is Jo € B(|o| = 1AB1(0, B, ¢,p)). In RCAg, we write p € B
for (B, ¢, p). The statement A2-rDRT2 now has the obvious translation in RCA.

A Borel code (B, ) for a X set is in normal form if B = w<"*! and for every
o with |o| < n, if |o] is even, then ¢(0) = U, and if |o| is odd, then ¢(c) =N. In
RCAy, for every (B, ¢), there is a (B, ?) in normal form such that for all p € (w)?,
p € Bif and only if p € B. Morcover, the transformation from (B, ) to (E, P) is
uniformly computable in (B, ). We describe the transformation when (B, ¢) is a
Borel code for a 9 set. The case for a ¥ set is similar.

Let (B, ) be a Borel code for a X9 set. By definition, A\ € B with p(\) = U.
Each o € B with |o| = 1 is the root of a subtree coding a 9 set (if ¢(c) € L), a
Y9 set (if p(o) = U) or a I set (if (o) = N). Consider the following sequence of
transformations.

e To form (Bj, 1), for each o € B with |o| = 1 and ¢(0) = U, remove the
subtree of B above ¢ (including o). For each 7 € B with 7 > o0, add a new
node 7’ to By with |7/| =1 and ¢1(7") = ¢(7) € L.

e To form (Ba, ¢3), for each leaf ¢ € By with |o| = 1, relabel o by p2(0) =N
and add a new successor 7 to o with label po(7) = ¢1(0).

e To form (Bs,¢s), for each o € By with |o| = 1, let 7, € By be the first
successor of . Add infinite many new nodes > o to Bz with ¢3(d) =
©2(75)-

e To form (By,¢4), let o be the first node of Bz at level 1. Add infinitely
many copies of the subtree above ¢ to B4 with the same labels as in Bs.

In (By,p4), the leaves are at level 2, every interior node is infinitely branching
and ¢4(c) = N when |o| = 1. There is a uniform procedure to define a bijection
f i By = w<3. We define (B,3) by B = w<® and 3(c) = @4(f~'(c)). In RCA,,
for all p € (w)?2, n(B, ¢, p) holds if and only if 17(§7 ©,p) holds.

When (B, ¢) is a Borel code for a X0 set in normal form, 7(B, ¢, p) is equivalent
to dxgVay - Quo1zn—1 (p € ©({zo, 21,...,2pn_1))) where Q,_; is V or 3 depending
on whether n — 1 is odd or even. We have analogous definitions for Borel codes for
1Y sets in normal form.

To define D%, let [w]™ denote the set of n element subsets of w. We view the
elements of [w]™ as strictly increasing sequences sy < 51 < +++ < Sp_1.

Definition 5.6. A coloring ¢ : [w]™ — 2 is stable if for all k, the limit

lm--- lim c(k,s1,...,80-1)
S1 Sn—1
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exists. L C w is limit-homogeneous for a stable coloring c if there is an ¢ < 2 such
that for each k € L,

lim--- lim c(k,s1,...,8,-1) = 1.
S1 Sn—1
D% is the statement that each stable coloring ¢ : [w]™ — 2 has an infinite limit-

homogeneous set.

Below, the proof of Theorem 5.7(2) is a formalization of the proof of Theorem
5.7(1), and the additional induction used is a consequence of this formalization.
We do not know if its use is necessary; that is, we do now if RCAg + IX9_; can be
replaced simply by RCAg when n > 2.

Theorem 5.7. Fixzn > 2.
(1) AY-rDRT3 =.w D%.
(2) Over RCAg + 130

n—1s

AV -rDRTj is equivalent to DY.

Corollary 5.8. AY-rDRT; is equivalent to SRT3 over RCA,.

Proof. D2 is equivalent to SRT% over RCAg by Chong, Lempp, and Yang [5]. |
Corollary 5.9. A-rDRT3 <.w SRT3.

Proof. D3 <sw SRT2 by Dzhafarov [6, Corollary 3.3]. (It also follows immediately
that AQ-rDRT2 =w D2 <w SRTZ.) O

Proof of Theorem 5.7. We prove the two parts simultaneously, remarking, where
needed, how to formalize the argument in RCAg + 1X9 .

To show that AY-rDRT3 <. w D%, and that A%-rDRT3 is implied by D over
RCAg + 1X0_,, fix an instance (w)? = Ro U Ry of A%-rDRTj where each R; is a
Borel code for a 39 set. Without loss of generality, Ry and R; are in normal form.
For each k > 1, fix the partition py = x ¢} (that is, ps has blocks w\ {k} and {k}).

For m < n, we let R;(to,...,tm) denote the Borel set coded by the subtree of
R; above (to,...,tm). Since (tg,...,tn—1) is a leaf, R;(to,...,t,—1) is the clopen
set ©;((to,...,tn—1)). If m < n —1, then R;(to,...,tm) is a code for a X°

n—(m+1)
set (if m is odd) or a II° set (if m is even) in normal form.

n—(m+1)
We define a coloring ¢ : [w]™ — 2 as follows. Let ¢(0,s1,...,8,-1) = 0 for all
§1 < -+ < 8$p—1. For m < n, let Q,, stand for 3 or V, depending as m is even or

odd, respectively. Given 1 < k < s1 < ... < sp_1, define
c(k, 81,y 8n-1) =1
if and only if there is a ¢y < s1 such that
(Vt1 < s1) - (Qmim < Sm) - (Qunot1tn-1 < $n—1) P& € po({to,-.-,tn-1))
and for which there is no ug < tg such that
(Vur < s1) - (Qumtm < $m) - (Que1tn—1 < Sn—1) P& € ©1((Yo, - .- Un—1)).

(Note that s; bounds tg, t; and w;, whereas the other s,, bound only ¢,, and u,,.)
The coloring ¢ is uniformly computable in (Ro, o) and (R1, 1) and is definable in
RCA( as a total function since all the quantification is bounded.

We claim that for each k > 1,

lim--- lim c(k, s1,...,8n—1)
S1 Sn—1
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exists. Furthermore, if this limit equals 1, then p, € Ry, and if this limit equals 0,
then pr. € R1. We break this claim into two halves.
First, for 1 <m <n — 1, we claim that for all fixed 1 <k < s1 <...< 8,

lm - lim c(k, $1,. ., Sm, Smt1y-- s Sn—1)
Sm+41 Sn—1

exists, and the limit equals 1 if and only if there is a tg < s; such that

(2) (Vt1 < s51) -+ (Qmtm < Sm) Pr € Ro(to, .. tm)
and there is no ug < tg such that
(3) (Vur < s1) - (Qutm < 8m) pr € R1(uo, -, Um)-

The proof is by downward induction on m. (In RCAq, the induction is performed
externally, so we do not need to consider its complexity.) For m = n — 1, there are
no limits involved and the values of ¢ are correct by definition.

Assume the result is true for m + 1 and we show it remains true for m. By the
definition of Ry(to,...,tm), to satisfies (2) if and only if

(Vt1 < s1) - (Qutm < $m)(Qumt1tm+1) Pr € Ro(tos -+ tms tmt1),

which in turn holds if and only if there is a bound v such that for all s,,11 > v,

(th S 51) e (thm S Sm)(Qm+1tm+l S Sm+1) Pk S RO(t07 cee atmatm+1)~

If Q41 is 3, then over RCAy, this equivalence requires a bounding principle. Since
pr € Ro(to,... tms1) is a H%_(m+2) predicate and m + 2 > 3, we need at most
BII® _, which follows from I1X? ;. An analogous analysis applies to numbers ug
satisfying (3). Thus, we can fix a common bound v that works for all ty < s7 in (2)
and all uy < tp < s1 in (3).

Suppose there is a tg < s1 satisfying (2) for which there is no ug < to satisfying
(3). Then, for all s,,+1 > v, to satisfies the version of (2) for m + 1, and there is

no ugy < to satisfying the version of (3) for m + 1. Therefore, by induction

JoVsma1 > v( lim --- lim ¢(k, s1,...,8,-1) = 1)
Sm+2 Sp—1
and hence lim,,,_, ---lim,,_, c(k,s1,...,8,-1) = 1 as required.

On the other hand, suppose that there is no ¢y < s; satisfying (2), or that
for every to < s; satisfying (2), there is a ug < to satsifying (3). Then, for all
Sm+1 = v, we have the analogous condition for m 4+ 1 and the induction hypothesis
gives limg, _, ---lim,,_, c(k,s1,...,8,-1) = 0. This completes the first part of the
claim.

We can now prove the rest of the claim. For each k& > 1, we have pi € Ry or
pr € Ry. Let ty be least such that px, € Ro(to) or pr € Ri(to). Since py € R;(t) is
a I19_, statement, we use 1X9 | to fix this value in RCA,.

Suppose pr, € Ry(to), so for all ug < to, it is not the case that py € Ry(up). By
the first half of the claim with m = 1, we have for every s; >ty

lim--- lim e(k, 1,82, 8p-1) = 1,
S2 Sn—1
and therefore limg, ---limg,,_, ¢(k, $1,...,8,—1) = 1.

Suppose pr & Ro(to), and hence p;, € Ri(tg). Again, by the first half of the
claim with m = 1, we have for every s; > tg

lim--- lim ¢(k, $1,82,...,8pn-1) =0,
S2 Sn—1
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so limg, -+ -lim,, _, ¢(k,s1,...,8n—1) = 0. This completes the proof of the claim.
Since c is an instance of D3, fix ¢+ < 2 and an infinite limit-homogeneous set L
for ¢ with color i. By the claim, p; € Ry_; for all kK € L. List the non-zero elements
of L as kg < k1 < ---, and let p € (w)* be the partition whose blocks are [0, ko)
and [k, kmy1) for m € w. Each z € (p)? satisfies u®(1) = k,,, for some m. Since
RoU R; is a reduced coloring, x and py,, have the same color, which is R;_;. Since
x was arbitrary, (p)? C R;_; as required to complete this half of the theorem.
Next, we show that D <qv AY-rDRT3, and that D} is implied by A%-rDRT3
over RCAq. (No extra induction is necessary for this implication.) Fix an instance
¢ [w]™ — 2 of DZ, and define a partition Ry U Ry of (w)? as follows. For z € (w)?
with u®(1) = k, € R; for the unique ¢ such that
lim--- lim ¢(k, $1,...,80-1) = i.
S1 Sp—1
Since each of the iterated limits is assumed to exist over what follows on the right,
we may express these limits by alternating ¥9 and I1Y definitions, as

(EIthl Z tl)(vtg 2 81382 Z t2) s C(k, Slyeeey Snfl) =1.

Thus, Ry and R; are X.0-definable open subsets of (w)?. By standard techniques,
there are Borel codes for Ry and R; as Z% sets uniformly computable in ¢ and in
RCAq. (Below, we illustrate this process for D3.)

By definition, (w)? = RoUR; is a reduced coloring and hence is an instance of A9-
rDRT3. Let p € (w)“ be a solution to this instance, say with color 4 < 2. Thus, for
every = € (p)?, the limit color of k = p*(1) is 4. Define L = {u?(m) : m > 1}. Since
for each k € L, there is an z € (p)? such that u®(1) = k, L is limit-homogeneous
for ¢ with color 4.

We end this proof by illustrating how to define the Borel codes for Ry and R,
as X9 sets from a stable coloring c(k, s1, s2). In this case, we have
limlismc(k‘, S1, 82) =i Htl (Vsl >t Vig > 81)(382 > tg) C(]i‘7 S1, 82) =1.

S1

The nodes in each R; are the initial segments of the strings ((k,t1), (s1,%2), s2) for
kE <t; < 81 <ty < sy and the labeling functions are ¢;(c) = U if |o] € {0,2},
wi(o) = Nif |o| = 1 and @;(((k,t1), (51,t2),82)) = [0%1] if c(k,s1,52) = i and is
equal to 0 if c¢(k, s1,s2) = 1 — . It is straightforward to check in RCAq that R;
represents the union of clopen sets [0%1] such that the limit color of k is 4. O

6. REVERSE MATH AND BOREL CODES

6.1. Equivalence of the Borel and Baire versions over ATRj. In this subsec-
tion we show that over the base theory ATRg, the Baire and Borel versions of the
Dual Ramsey Theorem are equivalent. We make the following definition in reverse
mathematics.

Definition 6.1 (RCAj). A Borel code is a pair (B, ), where B C w<% is well-
founded and ¢ is a labeling function as in Definition 4.1.

This definition differs slightly from the definition of a Borel code which is found
in the standard reference [17]. In that treatment, there is no labeling function, but
certain conventions on the strings in B determine the labels. Because there is no
labeling function, the set of leaves of B may not be guaranteed to exist in weak
theories. In [17], the base theory for anything to do with Borel sets is ATRg, so this
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distinction is never used. We would like to consider weaker base theories. When the
base theory is weaker, a constructive presentation of a Borel code should include
knowledge of which nodes are leaves. For example, this leaf-knowledge was used in
the proof of Theorem 5.7. This is the reason for including the labeling function in
our definition.

In Section 5.2 we diverged from the standard definition in a second way, by
ascertaining membership in a 39 set virtually. The standard method, which we
use in this section, is via evaluation maps.

Definition 6.2 (RCA;). Let (B, ) be a Borel code and = € (w)*. An evaluation
map for B at x is a function f: B — {0,1} such that

e For leaves 0 € B, f(o) =1 if and only if x € ¢(0).
o If (o) =U, f(o) =1 if and only if there exists n such that c~n € B and

fle™n) =1.
o If (o) =N, f(o) =1if and only if for all n such that c™n € B, f(c"n) =
1.

We say = € B if there is an evaluation map with value 1 at the root, and we say
x ¢ B if there is an evaluation map with value 0 at the root.

Observe that both z € B and z € B are ¥} statements. In general, ATR, is
required to show that evaluation maps exist. Similarly, (w)* = CoU...UCp_q is
the II3 statement that for every z € (w)* and i < ¢, there is an evaluation map for
C; at x and for some i < ¢, x € C;.

Definition 6.3 (RCAj). Let B be a Borel (or open or closed) code for subset of
(w)*. A Baire code for B consists of open sets U and V and a sequence (D,, : n € w)
of dense open sets such that U UV is dense and for every p € Nyeu Dy, if p € U
then p € B and if p € V then p ¢ B.

Definition 6.4 (RCAq). A Baire code for a Borel coloring (w)* = CoU---UCp_y
consists of open sets O;, i < ¢, and a sequence (D,, : n € w) of dense open sets such
that U;<¢O; is dense and for every p € Ny Dy and @ < £, if p € O; then p € C;.

We confirm that ATRy proves that every Borel set has the property of Baire.
This is just an effectivization of the usual proof.

Proposition 6.5 (ATRg). Every Borel code for a subset of (w)* has a Baire code.

Proof. Fix a Borel code B. For o € B, let B, = {7 € B : 7 is comparable to c}.
B, is a Borel code for the set coded coded by the subtree of B above ¢ in the
following sense. Let f be an evaluation map for B at x. The function g : B, — 2
defined by g(7) = f(7) for 7 = o and g(7) = f(o) for 7 < ¢ is an evaluation map
for B, at x which witnesses = € B, if and only if f(o) = 1. We denote this function
g by foz

Formally, our proof proceeds in two steps. First, by arithmetic transfinite re-
cursion on the Kleene-Brouwer order K B(B), we construct open sets Uy, V, and
D0, n € w, which are intended to form a Baire code for B,. This construction
is essentially identical to the proof of Proposition 5.3. Second, for any z € (w)*
and evaluation map f for B at z, we show by arithmetic transfinite induction on
KB(B) that if € NyewDn,o, then z € U, implies z € B, via f,, and z € V,
implies « ¢ B, via f,,. For ease of presentation, we combine these two steps.
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Since ATR( suffices to construct evaluation maps, we treat Borel codes as sets in a
naive manner and suppress explicit mention of the evaluation maps.

If o is a leaf coding a basic clopen set [r], we set U, = [r], V, = [r] and
Dy,.» = (w)*. Similarly, if o codes H, we switch the values of U, and V. In either
case, it is clear that these open sets form a Baire code for B, .

Suppose ¢ is an internal node coding a union, so B, is the union of B,~; for
0~k € B. We define U, to be the union of U,~, for 6"k € B and V, to be the
union of [7] such that V,~, is dense in [7] for all 0~k € B. The sequence D, , is
the sequence of all open sets of the form D,, ,~j N (Uy~y U Vy~y) for n € w and
0"k € B. As in the proof of Proposition 5.3, U, UV, and each D,, , are dense.

Let z € NpewDyp,o. Suppose x € U, and we show x € B,. By the definition of
Us, fix 07k € B such that o € U, ~. Since € Npew, Dy, 5~ k, We have by induction
that © € B,~; and hence z € B,. On the other hand, suppose x € V, and we
show x & B,. Fix 7 such that 7 < z and [r] C V,, and fix k such that 0"k € B.
Since € NpewDnos © € Uy~y, UV, ~;. However, V,~; is dense in [r]. Therefore,
x & Uy~ (because U,~j, and V,~;, must be disjoint as in the proof of Proposition
5.3), s0o © € V,~. Since x € NpewD,, 5k, We have by induction that x € B,~j.
Because this holds for every o™k € B, it follows that z ¢ B,,, completing the case
for unions.

The case for an interior node coding an intersection is similar with the roles of
U, and V, switched. O

Proposition 6.6 (ATR,). Baire-DRT} implies Borel-DRT?.

Proof. By Proposition 6.5, fix Baire codes U;, V; and D, ; for each C;. We claim
that the open sets U; for ¢ < £ and the sequence of dense open sets D,, ; for ¢ < ¢
and n < w form a Baire code for this coloring. Note that if ¢ < £ and x € N, ; Dy, 4,
then x € U; implies = € C;. Therefore, it suffices to show that U;.,U; is dense.
Suppose not. Then there is 7 such that [r] N U; = @ for all . Because each set
U; UV is open and dense, by the Baire Category Theorem there is © € [7] such that
T € Npew,ictDn,i and © € N;«(U; UV;). Since x is not in any U;, we have z € V; for
each i. Therefore, for each i, x € C;, contradicting that (w)* = CoU---UC,_;. O

Lemma 6.7 (RCAq). For every code O for an open set, there is a Borel code B
such that (w)* = BU B and for all x € (w)*, x € B if and only if x € O.

Proof. The content here lies in the proof that (w)¥ = B U B. That is, we need to
show that in the obvious Borel code, every z € (w)* has an evaluation map.

Fix O. Let (B, ) be the Borel code consisting of a root and a single leaf for
each (s,7) € O, where the leaf is labeled with [7].

We claim that for every = € (w)*, there is a unique evaluation map f for B
at =, and f(\) = 1 if and only if x € O. To prove this claim, we define two
potential evaluation maps, fo and f;. Let fo(A) =0 and f1(\) = 1. Then for each
i € {0,1} and each leaf o with label 7, define f;(c) = 1 if and only if z € [r]. Both
these functions have A{(x, B, ) definitions, and exactly one of them satisfies the
condition to be an evaluation map. Clearly, this condition implies that z € B if
and only if z € O. O

Corollary 6.8 (RCA,). Borel-DRT} implies Baire-DRT}.
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Proof. The previous proposition shows that BoreI—DRT’Z implies ODRT’KC and hence
implies Baire-DRT%. 0

6.2. The strength of “Every Borel set has the property of Baire”. We
have just seen that over ATRy, the Borel and Baire versions of the Dual Ramsey
Theorem are equivalent. But only one direction used ATRg, in order to assert that
every Borel set has the property of Baire. In this section, we ask if this principle
really requires ATRy. We find that it does, but the reason is unsatisfactory, because
it depends on a technicality in the standard definition of a Borel set. Some of the
authors of the present paper removed that technicality in the later-researched but
earlier-appearing paper [2]. When the technicality is removed, a principle strictly
weaker than ATR, emerges. We refer the reader to [2] for details.
In this section we show:

Theorem 6.9 (RCA). The following are equivalent.
(1) ATRy.
(2) For every Borel code B for a subset of (w)¥, there is an x € (w)* such that
r€Borx¢B.
(3) Every Borel code B for a subset of (w)* has a Baire code.

In fact, the implication from (2) to (1) can be witnessed using only trivial Borel
codes, which we define as follows.

Definition 6.10 (RCA;). A Borel code (B, ) for a subset of (w)* is trivial if every
leaf is labeled with either () or (w)¥.

If B is a trivial Borel code, then an evaluation map for B at p is independent of
p, so we can refer to an evaluation map f for B. Because we work with trivial Borel
codes, the underlying topological space does not matter as long as Borel codes are
defined in a manner similar to Definitions 6.1 and 6.2. For example, Theorem 6.9
holds for Borel codes of subsets of 2¥ or w* as defined in Simpson [17]. (The fact
that the leaves are labeled in Definition 6.1 does not affect any of the arguments in
this section.)

The main ideas in the proof that (2) implies (1) use effective transfinite recursion
and are similar to those in Section 7.7 of Ash and Knight [1].

Proposition 6.11 (RCAq). The statement “every trivial Borel code has an evalu-
ation map” implies ACAg.

Proof. Fix g : w — w and we show range(g) exists. Let B be the trivial Borel
code consisting of the initial segments of (n,m, 1) for g(m) = n and (n,m,0) for
g(m) # n. Label all leaves which end in 0 with (), and label all leaves which end
in 1 with the entire space. Label all interior nodes with U. Let f be an evaluation
map for B. Then f({(n)) = 1 if and only if there is an m such that g(m) =n. O

In order to strengthen this result to imply ATRg, we need to verify that effective
transfinite recursion works in ACAgy. Let LO(X) and WO(X) be the standard
formulas in second order arithmetic saying X is a linear order and X is a well order.
We abuse notation and write € X in place of € field(X). For a formula ¢(n, X),
H,(X,Y) is the formula stating LO(X) and Y = {(n,j) : j € X Ap(n,Y7)} where
Y9 = {(m,a):a <x jA(m,a) € Y}. When ¢ is arithmetic, H,(X,Y) is arithmetic
and ACA proves that if WO(X), then there is at most one Y such that H,(X,Y).
We define our formal version of effective transfinite recursion.
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Definition 6.12. ETR is the axiom scheme
VX [(WO(X) AVY Vi (p(n, Y) > ~b(n, Y))) = IV H,(X, Y)}

where ¢ and ¢ range over XY formulas.

We show that ETR is provable in ACAg. Following Simpson [17], we avoid using
the recursion theorem and note that the only place the proof goes beyond RCAq
is in the use of transfinite induction for 19 formulas, which holds is ACAy and is
equivalent to transfinite induction for £ formulas. Greenberg and Montalban [8]
point out that ETR can also be proved using the recursion theorem, although this
proof also uses XY transfinite induction.

Proposition 6.13. ETR is provable in ACAy.

Proof. Fix a well order X and X! formulas ¢ and 1. Throughout this proof, we
let f, g and h be variables denoting finite partial functions from w to {0,1} coded
in the canonical way as finite sets of ordered pairs. We write f < g (or f < X)
if f Cg(or f C xx) as sets of ordered pairs. By the usual normal form results
(e.g. Theorem I1.2.7 in Simpson), we fix a £ formula (g such that

VY Vi (p(n,Y) < 3f (f < Y Apo(n, f)))

and such that if g (n, f) and f < g, then pg(n,g). We fix a formula v related to
1 in the same manner. Since ¢(n,Y) < —)(n,Y’), we cannot have compatible f
and g such that pg(n, f) and ¥g(n, g).

Our goal is to use partial functions f as approximations to a set Y such that
H,(X,Y). Therefore, we view dom(f) as consisting of coded pairs (n,a). For f to
be a suitable approximation to Y, we need that if (n,a) € dom(f) and a ¢ X, then
f({n,a)) = 0. Similarly, if f is an approximation to Y7, we need that f({n,a)) =0
whenever (n,a) € dom(f) and a >x j. These observations motivate the following
definitions.

Let f be a finite partial function and let ¢ € X. We define

fi=f1{{na):ncwha<xi}.
We say g = f is an i-extension of f if for all (n,a) € dom(g)—dom(f), g({(n,a)) =0
and either a ¢ X or i <x a.
For j € X, f is a j-approximation if the following conditions hold.
o If (n,a) € dom(f) with a ¢ X or j <x a, then f({(n,a)) =0.
o If (n,a) € dom(f) and a <x j, then
— if f({n,a)) = 1, then there is an a-extension h of f such that pg(n,h),
and
— if f((n,a)) = 0, then there is an a-extension h of f* such that ¢ (n, h).
Note that if f is a j-approximation and ¢ <y j, then f? is an i-approximation. Also,
if f is a j-approximation and g is a j-extension of f, then g is a j-approximation.

Claim. For all j € X, there do not exist m € w and j-approximations f and g such
that @0(m7 f) and wo(mmg)

The proof is by transfinite induction on j. Fix the least j € X for which this
property fails and fix witnesses m, f and g. To derive a contradiction, it suffices to
show that f and g are compatible. Fix (k,a) such that both f((k,a)) and g({k, a))
are defined. If a ¢ X or j <x a, then f((k,a)) = g({k,a)) = 0.
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Suppose for a contradiction that a <x j and f((k,a)) # g((k,a)). Without
loss of generality, f({k,a)) =1 and g({k,a)) = 0. Fix a-extensions h and h' of f°
and ¢° respectively such that ¢g(k, h) and ¢o(k, h’). Since f is a j-approximation,
f% is an a-approximation, and since h is an a-extension of f? h is also an a-
approximation. Similarly, h’ is an a-approximation. Therefore, we have k € w,
a <x j and a-approximation h and h' such that ¢o(k, h) and g (k, h') contradicting
the minimality of j.

Claim. For any j-approximation f and any m € w, there is a j-approximation
g = f such that either @q(m, g) or ¥o(m,g).

The proof is again by transfinite induction on j. Fix the least j for which this
property fails and fix witnesses f and m. Let (ns,is) enumerate the pairs not in the
domain of f. Below, we define a sequence f = fo < f; < --- of j-approximations
such that fs11((ns,is)) is defined. Let Y be the set with xyy = Ugfs. Either
e(m,Y) or ¢¥(m,Y) holds, and so there is a g < Y such that ¢g(m, g) or 1o(m,g)
holds. Fixing s such that g < fs shows that either ¢q(m, fs) or ¥o(m, fs) holds for
the desired contradiction.

To define fq11, we need to extend fs to a j-approximation fsy; with (ng,is) €
dom( fs11). We break into several cases. If fs((ns,is)) is already defined, let fsy1 =
fs. Otherwise, if is & X or j <x i, set fs11({(ns,i5)) = 0 and leave the remaining
values as in fs. In both cases, it is clear that fs41 is a j-approximation.

Finally, if is <x j and fs((ns,is)) is undefined, we apply the induction hypothe-
sis to the is-approximation fi= to get an is-approximation g = fi such that either
©vo(ns, g) holds or ¥g(ns, g) holds. Define fs41 as follows.

e For (m,a) € dom(g) with a <x s, set fsr1({(m,a)) = g({(m

e For (m,a) € dom(f,) withis <x aora & X, set fo11((m,a)) =

e Set for1((ns,is)) = 1if po(ns, g) holds and fs11((ns,is)) = 0 if 1o(ns, g)
holds.

It is straightforward to verify that fs < fs11, g is an iz-extension of f;il and fsy1
is a j-approximation, completing the proof of the claim.

We define the set Y for which we will show H,(X,Y) holds by (m,j) € YV if
and only if j € X and there is a j-approximation f such that pg(m, f). It follows
from the claims above that (m,j) € Y if and only if either 7 ¢ X or there is a
j-approximation f such that 1g(m, f). Therefore, Y has a AY definition. The next
two claims show that H,(X,Y’) holds, completing our proof.

Claim. If f is a j-approximation, then f < Y7.

Consider (m,a) € dom(f). Ifa ¢ X or j <x a, then f({(m,a)) = YI((m,a)) = 0.
Suppose a <x j. If f({m,a)) = 1, then there is an a-extension g of f® such that
wo(m, g). Since f* is an a-approximation and g is an a-extension of f¢, g is an
a-approximation. Therefore, (m,a) € Y by definition and hence (m,a) € Y7. By
similar reasoning, if f({(m,a)) = 0, then (m,a) ¢ Y and hence (m,a) ¢ Y7.

Claim. (m,j) € Y if and only if p(m,Y?).

Assume that (m,j) € Y and fix a j-approximation f such that ¢o(m, f). Since
f = YJ, o(m,Y7). For the other direction, assume that ¢(m,Y7). Fix a j-
approximation f such that either g (m, f) or ¥g(m, f). Since f < Y7 and ¢(m, Y7),
we must have po(m, f) and therefore (m,j) € Y by definition. a
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We recall some notation and facts from Simpson [17] to state the equivalence of
ATR( we will prove. We let T'J(X) denote the Turing jump in ACAq given by fixing
a universal I1{ formula. We use the standard recursion theoretic notations ®X and
<I>éfs with the understanding that they are defined by this fixed universal formula.

O4(a,X) is the arithmetic statement that a = (e, ), e is an X-recursive index
of an X-recursive linear order <Y and i € field(<X). O = {a: O4(a, X)} exists
in ACAy. For a,b € Of, we write b < a if a = (e,i), b = (e, j) and j <X i. For
a € OF, the set {b: b <} a} exists in ACA,.

O(a, X) is the I1} statement O (a, X) AWO({b: b <& a}). Intuitively, O(a, X)
says that @ = (e,4) is an X-recursive ordinal notation for the well ordering given
by the restriction of <X to {j : j <X i}. In ATRy, if O(a, X), then the set

HX ={(5,0):y e X}U{({y,b+1):b<d aNyeTJ(H)}

exists. In ACAy, there is an arithmetic formula H(a, X,Y’) which, under the as-
sumption that O(a, X), holds if and only if Y = HX.
By Theorem VIIL.3.15 in Simpson [17], ATRy is equivalent over ACA; to

VX Va (Oa,X) — HX exists).

If O(a, X) with a = (e, i), then we can assume without loss of generality that there
are a’ and a” such that O(a’, X), O(a”, X) and a <3 a' <& a” by adding two new
successors of i in <X if necessary. Therefore, to prove ATRy, it suffices to fix a and
X such that O(a, X) and prove Ve <@ b(HZX exists) for each b <{ a.

Theorem 6.14 (ACAq). The statement “every trivial Borel code has an evaluation
map” implies ATRg.

Proof. Fix a and X such that O(a, X), so the restriction of <% to {b:b <& a} is
a well order. Using ETR, we define trivial Borel codes B, ; for € w by transfinite
recursion on b <f§ a. We explain the intuitive construction before the formal
definition.

Let b <?§ a and z € w. We want to define a trivial Borel code B, such that if f
is an evaluation map for B, ;, then f(\) = 1 if and only if x € TJ(H;X). We label A
with U. For each binary string o such that (I);IUI (z) converges, we add a successor
(ny). Here o — n, is just some primitive recursive bijection between 2<% and w.
It follows that f(A) = 1 if and only if there is a o such that ®7 | () converges and
f({ne)) = 1. (In case ®F | (x) always diverges, we may also add a leaf (n) which

is labeled with (). In this case, f(A\) = f((n)) = 0 and = ¢ TJ(H;*) which is what
we want.)

Next, we want to ensure f({n,)) =1 if and only if o < H;*. We label (n,) with
N, and for each k < |o|, we add a successor (n,, k). We want f((n,,k)) =1 if and
only if o(k) = H;X (k). We break into cases to determine the extensions of (n,, k).

For the first case, suppose k = (y,0). We want f({(n,,k)) = lifand only ify € X.
If o(k) = X(y), we label this node with the entire space, and if o(k) # X (y), we
label this node with (). In either case, the successor nodes will be leaves so we have
f((ny,k)) =1 if and only if k € HX.

For the second case, suppose k = (y,c + 1) and ¢ <?§ b. By the induction
hypothesis, we have defined the trivial Borel code B, . already. If o(k) = 1, then
we label (n,, k) with U, and attach to it a copy of B, ., treating (n, k) as the root
of By .. The map f restricted to the subtree above (n,, k) is an evaluation map for
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B, . and hence by the inductive hypothesis
flne, k) =1 yecTJHYX) e ke HY < o(k) = H (k).

On the other hand, if o(k) = 0, then we label (n,,k) with N and extend it by a
copy of E‘%C. By the inductive hypothesis, we have

flng,k)) =1y g TIHY) & k¢ Hy < o(k) = Hy (k).

For the third case, suppose that k = (y,c¢+1) and ¢ {gg b. In this case, we know
H¥(k) =0. If o(k) = 0, we label (n,, k) with the entire space, and if o(k) = 1 we
label it with .

The formal construction follows this outline. To simplify the notation, for a

trivial Borel code B, we let B' = B and B° = B. Since @7 |, (x) converges” is
a bounded quantifier statement and ¢ <@ b is a A} statement with parameter X,
the following recursion on b <g§ a can be done with ETR. For each x € w, we put
A in B, with label U. For each o such that @;'7‘0'(30) converges, we put (n,) and
(ne, k) in By for all k < |o|. We label (n,) with N. We extend (n,, k) as follows.

e For k = (y,0): if (k) = X(y), then (n,, k) is labeled with the whole space,
and if o(k) # X (y), then it is labeled with ().

e For k = (y,c+ 1) with ¢ <3 b, (ny, k)7 € By for all 7 € BZV(C’C), with
labels inherited from Bg}ck).

e For k = (y,c+ 1) with ¢ £3 b, (n,, k) gets labeled with the whole set if
o(k) =0 and labeled with @ if (k) = 1.

This completes the construction of the trivial Borel codes By for b <f§ a by
ETR. To complete the proof, we fix an arbitrary b < a and show that Ve <3
b(HX exists).

Fix an index  and s € w such that <I>:1:s (x) converges. Let N be the least value
of s witnessing this convergence so ®1(x) converges for all s > N. Let f be an
evaluation map for B, ;. '

For ¢ <¥ band y € w, let 0 = 1V** where k = (y,c + 1). Define f, .(7) =
f((ne, k)y~7). We claim f, . is an evaluation map for B, .. By the choice of z,
®7 |,(x) converges. Since ¢ <& band o(k) = 1, we have (n,, k)7 € B, if and
only if 7 € By .. Therefore, f, . is defined on B, . and it satisfies the conditions for
an evaluation map because f does.

Recall that H(x,X,Y) is a fixed arithmetic formula such that if O(x, X), then
H(x,X,Y) holds if and only if Y = HX. Define

Z={(,0):ye X}U{k:k={(y,c+1) Ac<dbA f({ng, k) =1}
For ¢ < b, let Z¢ = {{y,r) € Z:r =0V r—1 < c}. We show the following
properties by simultaneous arithmetic induction on ¢ <f§ b.
(1) H(e,X,Z¢) holds. That is, Z¢ = HX.
(2) For all y, f,.(\) =1if and only if y € TJ(Z¢) = TJ(HX).
These properties imply Ve <f§ b(HX exists) completing our proof.
Fix ¢ <& b and assume (1) and (2) hold for d < c. To see (1) holds for ¢, fix k.

If k= (y,0), then k € Z¢ < y € X & k € HX. Suppose k = (y,d+1). If d £3 ¢,
then k ¢ HX and k & Z¢. If d <{ ¢, then

ke Z® s f((no, k) =1« fy,d()‘) =1
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By the induction hypothesis, k € Z¢ if and only if y € TJ(Z%) = TJ(HZ), which
holds if and only if & € HX, completing the proof of (1).

c

To prove (2), fix y and let kK = (y,c+ 1). By definition,
keZ s fye(A) = f((ne, k) =1,

and y € TJ(Z¢) = TJ(H) if and only if there is a o such that @7, (y) converges
and o < Z¢ = HX.

Suppose there are no ¢ such that ®7 |(T‘(y) converges. In this case, y ¢ TJ(HX)
and fy, c(\) = 0. Therefore f, .(\) =1 if and only if y € TJ(H) as required.

Suppose @Zlal(y) converges for some o. For any such o, (n,,k) € By for
all k¥ < |o|. By the induction hypothesis and the case analysis in the intuitive
explanation of the construction, we have f, .({(n,)) = 1if and only if ¢ < HX = Z¢,

and therefore, f, .(A\) =1 if and only if there is a o such that 7 ‘al(y) converges

and o < HX, completing the proof of (2) and of the theorem. O
We conclude with a proof of Theorem 6.9.

Proof. Lemma V.3.3 in Simpson [17] shows (1) implies (2) in the space 2 and the
proof translates immediately to (w)¥. By Proposition 6.5, (1) implies (3). It follows
from Theorem 6.14 that (2) implies (1). We show (3) implies (2). Let B be a Borel
code. Fix a Baire code U, V and D,, for B. Since each D,, and U UV is a dense
open set, there is an ¢ € (UUV) N NpewDy. If & € U, then by the definition of
a Baire code, x € B, and similarly, if z € V, then x ¢ B. Therefore, we have a
partition z such that € B or x ¢ B as required. a

7. OPEN QQUESTIONS

While Figure 1.1 summarizes the known implications among the studied princi-
ples, in most cases it is not known whether the results are optimal. It is particularly
dissatisfying that the best upper bound for these principles remains I13-CAg. Ob-
serve that, on the basis of the proof of CDRTIZC given in Theorem 3.18, any upper
bound on the strength of the Carlson-Simpson Lemma CSL(k — 1,¢) would also
imply a related upper bound on the strength of CDRTIZc . Therefore, it would be
interesting to know the following:

Question 7.1. For any k > 3, does CSL(k, ¢) follow from ATRy?

The best known upper bound for CSL(2,¢) is ACAy; it is shown in [11] that the
stronger principle OVW(2, ¢) follows from ACA,.

Turning attention now to lower bounds, the principles CDRT@€ for k > 4 are not
obviously implied by HT or ACAU+. We wonder whether an implication might go
the other way.

Question 7.2. For any k > 4, does CDRT? imply HT or ACAS‘?

When k > 4, it is known that CDRT} implies ACAq (this was proved for ODRT}
in [12]). On the other hand, while CDRT} is provable from Hindman’s Theorem,
the best lower bound we have on CDRT} is RT3. Furthermore, nothing about the
relationship of CDRT3 and ACA is known.

Question 7.3. Is CDRT‘;’ comparable to ACA(?

For the k = 2 case, can Theorem 5.7 be strengthened in the following way?
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Question 7.4. Is A%-DRT3 =, D5?

These are just a few of the many questions that remain concerning these princi-
ples.
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