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ABSTRACT. We characterize the completely determined Borel subsets
of HY P as exactly the Al(wak) subsets of HY P. As a result, HY P
believes there is a Borel well-ordering of the reals, that the Borel Dual
Ramsey Theorem fails, and that every Borel d-regular bipartite graph has
a Borel perfect matching, among other examples. Therefore, the Borel
Dual Ramsey Theorem and several theorems of descriptive combinatorics
are not theories of hyperarithmetic analysis. In the case of the Borel
Dual Ramsey Theorem, this answers a question of Astor, Dzhafarov,
Montalbdn, Solomon & the third author.

1. INTRODUCTION

Theorems about Borel sets are often proved using arguments which appeal
to some property of Borel sets, rather than proceeding by transfinite recursion
on the structure of the set directly. Examples include category arguments,
measure arguments, and Borel determinacy arguments. When a theorem
has been proved using one of these methods, it is natural to wonder if there
are essentially different proofs. Reverse Mathematics provides a framework
for answering this kind of curiosity. In this paper we consider the Reverse
Mathematics strength of several such theorems, one from Ramsey theory
and the rest from descriptive combinatorics.

The Reverse Math strength of the Dual Ramsey Theorem [CS84] has
been the topic of several papers [Sim85), MS04, DFSW21, ADM™20]. In this
theorem, one starts with a “nice” coloring of the space of partitions of w
into k pieces, and the theorem guarantees a partition of w into infinitely
many pieces, all of whose k-piece coarsenings have the same color. When
“nice” means Borel, in [ADM™20] it was shown that the Borel Dual Ramsey
Theorem for 3-partitions follows from CD-PB + ACA(J{, where CD-PB is the
statement “every completely determined Borel set has the property of Baire”ﬂ
“Completely determined” refers to a restricted way in which Borel sets can
be encoded; see Section [2] for details. This reflects the fact that the proof
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n fact, since CD-PB implies L ,-CAg, the Borel Dual Ramsey Theorem for 3-
partitions follows from CD-PB + X1-IND.
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of the Borel Dual Ramsey Theorem uses a category argument. In fact, the
theorem is also true for colorings which have the property of Baire [PV8&5].

In [ADM™20], it was left as an open question whether the Borel Dual
Ramsey Theorem is a statement of hyperarithmetic analysis. If it were, it
would imply that the category argument in the usual proof is not essential,
because CD-PB fails in HY P [ADM™20], while by definition every statement
of hyperarithmetic analysis holds in HY P.

Theorem 1.1. For any finite k,£ > 2, The Borel Dual Ramsey Theorem for
k-partitions and ¢ colors fails in HY P. Therefore, the Borel Dual Ramsey
Theorem is not a statement of hyperarithmetic analysis.

It remains open whether the Borel Dual Ramsey Theorem implies CD-PB.

Our second motivation comes from the area of descriptive combinatorics.
Using the axiom of choice, any d-regular bipartite graph has a perfect
matching, and any acyclic graph has a 2-coloring. However, if we restrict
attention to Borel perfect matchings and Borel colorings, the matching may
no longer exist or the needed number of colors may increase. This area is
surveyed in [KM20].

Marks has shown that there is a 3-regular Borel bipartite graph with
no Borel perfect matching [Marl6]. The proof uses a Borel determinacy
argument, in contrast to the more typical use of measure and category
arguments to prove theorems in this area. In a talk given at the ASL Annual
Meeting in Macomb in 2018, Marks wondered whether such a big hammer
was really needed, and asked for the Reverse Mathematics strength of this
theorem. We show that no statement of hyperarithmetic analysis is strong
enough.

Theorem 1.2. In HY P, every completely determined Borel d-regular bipar-
tite graph has a completely determined Borel perfect matching.

Statements of hyperarithmetic analysis are among the weakest axioms
strong enough to make sense of Borel sets. It would be interesting to know
whether Marks’ theorem can be proved via a measure or category argument,
two methods which suffice for many theorems of descriptive combinatorics.
We do not take on that question here, but for a brief discussion of how it
can be formalized, see the end of Section

Both results above are consequences of the main theorem of this paper,
characterizing those subsets of HY P which HY P believes are completely
determined Borel. Recall that wak Nn2Y=HYP.

Theorem 1.3. For any A C HY P, the following are equivalent.

(1) There is a completely determined Borel code for A in HY P.
(2) There is a determined Borel code for A in HY P.
(3) Ais Al(wak).
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Definitions of completely determined and determined Borel codes are given
in Section 2l The proof makes essential use of non-standard Borel codes and
the method of decorating trees which was introduced in [ADM™20).

In both the Borel Dual Ramsey Theorem and Marks’ theorem, some
restriction on the coloring and/or perfect matching is known to be necessary;
the failure of these theorems without the Borel condition is witnessed by
straightforward choice arguments. Strangely, the failure of these theorems
in HY P is witnessed by essentially the same choice arguments, albeit in a
more technical form. This is possible due to the following pathology of Borel
sets in HY P.

Theorem 1.4. In HY P, there is a completely determined Borel well-
ordering of the reals.

We use similar methods to construct choice-flavored counterexamples in
HY P to some other theorems of descriptive combinatorics, such as those
concerning the prisoner hat problem and various vertex and edge coloring
theorems for d-regular graphs.

Having recreated some choice-flavored constructions, we asked how reliably
Borel constructions in HY P mimic choice constructions in the real world.
We find that the analogy is not perfect, as the following result shows.

Theorem 1.5. In HY P, there is a completely determined Borel acyclic
graph where each vertex has degree at most 2, but which has no completely
determined Borel 2-coloring.

We give the preliminaries in Sections [2]and [3] the latter of which is devoted
entirely to the method of decorating trees, making this paper self-contained
for readers already familiar with Reverse Mathematics and hyperarithmetic
theory. The main result characterizing the completely determined Borel sets
in HY P is given in Section [l Section [ contains all of the applications.

2. PRELIMINARIES

We denote elements of w<“ by o, 7,7. We write o < 7 to indicate that o
is an initial segment of 7, and write o < 7 if ¢ is a proper initial segment
of 7. We write 07 for the concatenation of 0 and 7. We write 6" n as an
abbreviation for o™ (n).

Throughout, we assume familiarity with hyperarithmetic theory and re-
verse mathematics. A standard reference for the former is [Sac90] and for
the latter, [Sim09]. We are primarily interested in considering notions within
the second order model HY P; this is the model of second-order arithmetic
in which the natural numbers are interpreted by the usual natural numbers
but the only sets present are the hyperarithmetic sets.

We write O* for the set of ordinal notations in HY P, and <, for the
computable partial order comparing those notations. We will use a, 3,7, d
for elements of O*. These notations represent the ordinals of HY P because
a € O* if and only if there is no hyperarithmetic <,-descending sequence
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below «. It is well-known that there elements a in O* such that <, is, in
fact, ill-founded below «, but no descending sequence is hyperarithmetic. As
usual, we write O for the subset of O* consisting of actual ordinals—that is,
a € O if and only if there is no <,-descending sequence below «.

When care is needed in the use of notations, we use the standard notation
H, to refer to the set obtained by taking jumps along the notation . When
we only need to refer to a set in the same <p-degree as H,, we use the
notation )*. We often abuse notation by identifying ordinal notations with
the ordinals they represent, writing for example o + k, or o + O(1) to refer
to an ordinal which is a finite successor of a.

Definition 2.1. A tree is a subset of w<“ closed under initial segments.

When T is a tree, we write T,, = {o | (n) "o € T}.
A labeled Borel code is a well-founded tree T C w<“ together with a
function ¢ whose domain is T and such that:
e for each interior node o of T, ¢(o) is either |J or ),
e for each leaf n of T, £(n) is a standard code for a clopen subset of 2¢.
When ¢(c) =, we call o a union node, and when £(c) =, we call o an
intersection node.

We will be considering Borel codes in HY P—that is, T and ¢ are them-
selves hyperarithmetic, and there is no hyperarithmetic descending sequence
in T. Equivalently, T" has a height in O*.

We can ask for codes which make this ordinal height explicit.

Definition 2.2. Let c € O*. U T Cw<Y and p: T — {f € O*: B8 <, a},
we say that p ranks T if for all o and n such that o™ (n) € T, we have
p(c™n) <. p(o). We say T is a-ranked by p. We call p(()) the rank of T'.

When T,/ is a true Borel code, it encodes a subset |T'| of 2. Namely:

e if () is a leaf, Ty is the clopen set coded by 2t
o if £(()) = U, T codes U, |Txl,
o if £(()) =, T codes N, |Tnl-
To make this precise in a model of second order arithmetic, we need the
notion of an evaluation map.

Definition 2.3. When 7' is a labeled Borel code and X € 2¥, an evaluation
map for X € T is a function f : T — {0,1} such that:

e if nis aleaf, f(n) =1 if and only if X is in the clopen set coded by

£(n),

e if o is a union node, f(o) =1 if and only if f(0™n) = 1 for some
n € w,

e if o is an intersection node, f(o) =1 if and only if f(6"n) =1 for
all n € w.

We say X is in the set coded by T', denoted X € |T|, if there is an evaluation
map f for X in T such that f({)) = 1.
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The statement “for every Borel code T and every X, there is an evaluation
map for X in 7”7 is equivalent to ATRo[DFSW21]. In particular, in HY P
there are labeled Borel codes for which no evaluation maps exist for any X.
In [ADM™20] this is addressed by introducing the notion of a completely
determined Borel code.

Definition 2.4. A labeled Borel code T is completely determined if every
X € 2“ has an evaluation map in T

A related notion, named but not studied in [ADM™20], is a determined
Borel code. Considering a Borel code as a game played by a \/ player against
a A player in the sense of [Bla81], the code is called determined if for every
X, one of the players has a winning strategy in the game.

Definition 2.5. A labeled Borel code T' is determined if for every X € 2%,
there is a function f :C T — {0, 1}, called a winning strategy for X in T,
such that

e If o is a leaf and f(o) is defined, then f(o) =1 if and only if X is in
the clopen set coded by ¢(o).

e If o is a union node, f(o) = 1 implies there is some n € w such that
f(c™n) =1, and f(o) = 0 implies for all n € w, if 67 n € T then
f(c™n)=0.

o If o is an intersection node, f(o) = 0 implies there is some n € w
such that f(c™n) =0, and f(o) = 1 implies that for all n € w, if
o~n €T then f(o7n) =1

e f(()) is defined.

It can happen that a Borel code is determined without being completely
determined. For example, in HY P, let T' be Borel code which is not com-
pletely determined. Then the set () N |T'|, written as a Borel code with () at
the root, is determined but not completely determined in HY P.

Given a Borel code T', we define a code for its complement as follows.

Definition 2.6. If T is a Borel code, let =T denote the Borel code which
uses the same tree, but modifies the labeling function as follows. Change
to U and vice versa at all interior nodes, and at each leaf replace the coded
clopen set with its clopen complement.

It is clear that if f is an evaluation map for X in T, then 1 — f is an
evaluation map for X in =7, and thus regardless of the model, X € |T| if
and only if X & |-T.

3. DECORATING TREES

The main method we use is a construction from |[ADM™20] which takes a
tree T' and “decorates it” with additional nodes to create a new Borel code.
When we perform this decoration properly, the resulting Borel code will be
completely determined in HY P. The results of this section were essentially
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proved in [ADM™20], but to keep this paper self-contained, we present them
here with more streamlined notation and proofs.

Definition 3.1. Let « be an ordinal and let 1" be a labeled Borel code
a-ranked by p. Suppose P and N are two countable sets of a-ranked
labeled Borel codes. We define the decoration of T by {P,N}, denoted
Decorate(T, P, N), recursively by:

e if T is a leaf, T" is unchanged,
e otherwise, the children of () in Decorate(T, P, N) are given by:
— for each child T;, of T', the tree Decorate(T,, P,N) is a child,
— if () is a union node, for each P € P where P has rank <, p(()),
the node Decorate(P, P,N) is a child, and
— if () is an intersection node, for each N € N where N has rank
<« p({)), the node Decorate(~N, P, N) is a child.

Since T' and all elements of P UN are a-ranked, the restriction on the
ranks of P and N ensures that Decorate(T,P,N) is also a-ranked.

Lemma 3.2. Ifa € O, X € |Q| for every Q € PUN of rank less than «,
and T is ranked in « then X € |Decorate(T, P, N)| if and only if X € |T)|.

Proof. By induction on a. Let g be the evaluation map for X in 7" and A
the evaluation map for X in Decorate(T, P, N )—since « is an actual ordinal,
both exist and are unique.

If T is a leaf, this is immediate. Otherwise, consider the children of the
root in Decorate(T, P, ). Say () is a union node. If there is some child 7,
in T" which g assigns to 1, then by the inductive hypothesis, h must assign
1 to the corresponding child node Decorate(T,,, P, ') in Decorate(T, P, N),
so h({)) = 1. Otherwise, g assigns 0 to every child of () in 7. Every
child of () in Decorate(T, P, ) is either of the form Decorate(T;,, P, ') or
Decorate(P, P, N); by the inductive hypothesis and the assumption that
X & |P|, h assigns 0 to both kinds of children, so h(()) = 0.

The intersection case is symmetric: if g assigns 0 to any child 7}, of ()
then, by the inductive hypothesis, h must assign 0 to the corresponding child
node Decorate(T,,, P, N) in Decorate(T, P, N'), so h(()) = 0. If g assigns 1 to
every child of () in T then, since the children () Decorate(T, P, N) are either
of the form Decorate(T,,, P, N') or Decorate(—=N,P,N); by the inductive
hypothesis and the assumption that X € |=N|, h assigns 1 to both kinds of
children, so h(()) = 1. O

We will be interested in the stituation where we carry this operation out
in HY P. Note that when o € O*, T is in HY P, and the collections P and
N are enumerable in HY P (that is, HY P contains sequences (P, )ne,, and
(Np)new such that P ={P, :n € w} and N = {N,, : n € w}), then the tree
Decorate(T, P,N) is in HY P as well.

Let Po denote the subset of P consisting of codes whose rank is well-
founded, and similarly define Np. The key result is the following:
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Theorem 3.3. Let o € O* \ O. Suppose that P and N are countable
collections of a-ranked decorations, enumerable in HY P, such that for each
X € HYP, there is a unique Q € Po U Np with X € |Q|. Then there
is a computable tree T such that in HY P, Decorate(T, P, N') is completely
determined and |Decorate(T, P, N')| = Upep, |P|-

Proof. Let T be the tree {(), (1)} where () is a union node and p(()) = «,
while (1) is a leaf coding () which has rank 0.

For technical reasons, it will be convenient to assume that each element of
‘P has an intersection at its root. This is a harmless assumption - given any
enumeration of P, we may simply modify each code P in it, increasing its
rank by one in order to add a new root which expresses a trivial intersection
whose only argument is P. Increasing a by 1 as well, this addition does not
endanger any of the hypotheses of the theorem.

The key idea is this: given a hyperarithmetic set X, and the unique @ €
PoUNp such that X € |Q], we can find a hyperarithmetic evaluation map for
X in Decorate(T, P, N'). We can always find hyperarithmetic evaluation maps
for the low-ranked parts of Decorate(T, P, N). Since many high ranked nodes
will have a decorated version of () as a subtree, we can then systematically
assign values of the evaluation map to these nodes.

So let X be given and let v be the rank of Q). Since Decorate(T, P, N) is
hyperarithmetic and v € O, there is a partially defined evaluation map go
defined on all nodes of Decorate(T, P, N') with rank < ~. (Such a gy can be
computed in slightly more than v jumps from Decorate(T, P, N).)

Suppose @ € P. We extend g to an evaluation map g on all of Decorate(T, P, N)
as follows:

e If 0 is a union node with rank > v, g(o¢) = 1. Since one of the
children of ¢ is a copy of Decorate(@, P, N'), which, by Lemma
go must assign 1 to, this is a correct evaluation map.

e If ¢ is an intersection node then consider the following set of descen-
dants of o:

D, ={r€T:7 > 0,7 is a union or leaf,
and for each v with 7 = v > o, v is an intersection}.

For each 7 € D, if p(7) <, 7, then 7 is in the domain of gy, so we
know the correct value for o based on gg. If p(7) >, 7, then we shall
assign ¢g(7) = 1, so these nodes can be safely ignored, as they can
only help X get into the intersection at 0. We assign 1 to ¢ if and
only if every 7 € D, of rank <, - has been assigned 1 by gg. This
can be done uniformly in one jump of go.
Therefore g can be computed from gg in one more jump. It is clear that
g satisfies the definition of an evaluation map. Finally, g assigns 1 to ()
because this is a union node of rank a >, ~.
The case where Q € N is dual, with one small addition to the argument
needed to verify the value of g(()). We extend gy to an evaluation map g by:
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e If o is an intersection node with rank >, v then g(o) = 0. Since
X ¢ |=Q] and one of the children is a copy of Decorate(—Q, P, N),
this is a correct evaluation map by Lemma [3.2

e If ¢ is a union node with rank >, v, define D, in a dual way to what
was done above, swapping intersections and unions:

D, ={r €T :7 > 0,7 is an intersection or leaf,

and for each v with 7 > v > o, v is a union}.

Each 7 € D, of rank <, v is in the domain of gy. If any 7 € D, has
rank >, v then we shall have g(7) = 0, so these nodes can be safely
ignored, as they cannot help X get into the union at o. We assign 1
to o if and only if some 7 € D, of rank <, « has been assigned 1 by
go-
Again, ¢ is an evaluation map which can be computed from gy in one more
jump. Now we wish to show that g(()) = 0. Consider the set Dy. Because
every element of P has an intersection at its root, and () has only a single
leaf child T, every child of () in Decorate(T, P, ') is an intersection or leaf
node. Therefore, Dy is exactly the set of children of (), and these all take
the form Decorate(P, P, ') for some P € P, plus the single leaf, which has
been unchanged by decoration. For each non-leaf child 7 with rank <, ~,
X ¢ |P|, and thus by Lemma [3.2) X ¢ |Decorate(P,P,N)| and go(7) = 0.
Therefore, g(()) = 0, as needed. O

4. CHARACTERIZATION OF BOREL SETS IN HY P

Our main theorem is the following. Considering Godel’s constructible
universe L = U, corq Ly, recall that wak Nn2¥=HYP.

Theorem 4.1. For any A C HY P, the following are equivalent.

(1) There is a completely determined Borel code for A in HY P.
(2) There is a determined Borel code for A in HY P.
(3) A is Al(wak)

Before proving this, recall that for any ¥; formula 6(z) in the language of
set theory, we have that L = 6(x) if and only if there is some o < w§¥

such that L, | 6(x). Therefore, it will be useful to bound the complexity of
deciding facts about L. In short, it is well-known that (*® can compute a
presentation of L,, but we give a (rather standard) proof here, because we
also need to take a little care with the ordinal notations when using this claim.
Specifically, we give an algorithm which computes a presentation of L, given
H,,.,, where w - « is the notation defined as follows. Let w-a = 3 - 5¢(®)
where e is defined recursively by

boor () RN if o« = lim,, o,
n)=
e w-(a—1)4+n if ais a successor.
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Here the “+n” in the second line is shorthand for a height n tower of 2’s.
Representing the notations for w - « in this way gives us a uniform procedure
which finds, for each § <, a, compatible notations w - 8 <, w - a.

Proposition 4.2. There is a computable procedure which, given a € O and
H,.o, returns a presentation ©, of Ly (in the language of set theory, {€}).
Furthermore, the procedure can be chosen so that the presentations have two
nice properties:
(1) Whenever 8 <« «, the restriction of O to the domain of ©g is equal
to ©g and is an e-initial segment of O.
(2) The common ©,, is a computable copy of L. In particular there
is a computable bijection between the matural numbers and their
representatives in O,,.

Proof. We consider the domain of each O3 as a subset of N x N. For each
infinite successor notation <, «, we reserve the the column N x {3} for
the elements of ©5 \ ©3_1.

We proceed by effective transfinite recursion, and begin with a computable
presentation ©,, of L, using N x {w} as the domain, and choosing this
presentation to satisfy the second niceness condition above.

Given a = lim,, o, and H,,.o, we define O, = J,, ©,,, which is uniformly
computable from H,,., because the nth column of H,., suffices to compute
all atomic facts about O involving elements from ©,,, .

Given o = f 4+ 1 and H,,.o, we can uniformly obtain H,.g, for each n.
Use H,.5 to obtain O3, and then add elements of N x {a} to the domain
of ©, as follows. Let (¢1,21), (2, 22),... be some canonical enumeration
of formula-parameter pairs (with the parameters in z drawn from ©3) such
that

Def(95) = {{y € O5 : O = il )} 11 € w}

For each pair (¢;, %;), ask H,.o whether there is already some w € ©Og

such that for all y € g,

Os Fyew < O3 ¢i(y,z).
Similarly ask if there is some j < 7 such that for all y € Og,

Op = 0i(y, %) < Op = ¢ily, zi)
If either answer is yes, the defined set is already accounted for and can
be ignored; if not, use a new element of N x {a} to represent a set with
membership facts as above. Because O3 is computable from H,,.3 and all
finite jumps of this set are available in H,.,, the latter can compute all these
new facts. U

Proof of Theorem[[.1 (1) = (2) is clear.
(2) = (3). If T is a determined Borel code for A in HY P, then
the statement “f is a winning strategy for X in T can be expressed in

the language of set theory using only bounded quantifiers, so both A and
HYP\ A are El(wak).
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(3) = (1). Suppose that A is Al(wak). Then there is a finite list of
parameters z € wak and two X; formulas ¢ and ¢ such that for all X € 2,

X €A = Ly = o(X,2) and X ¢ A = Lo =v(X, 2).

We will define a completely determined Borel code for A as follows. Fix
a € O*. We use decorations P ={Ps: 7 <, f <, a} and N = {Ng:v <,
B <i a}, where v is large enough that all elements of z are in L.. We shall
define Pg to satisfy

|Pg| = {X € Lg : B is least such that Lg = ¢(X,2)}

and similarly for Ng but using 1. We now show how to computably enumerate
a-ranked Borel codes for these sets P3 and Ng, such that P3 and Ng each
have rank w - 5+ O(1).

By the first niceness condition in Proposition if 8 >4 v, then the
elements of dom ©4 which represent the parameters in z are in fact elements
of dom ©, and do not depend on 3. Therefore, without confusion we may
also use the notation z to refer to those elements of dom ©, which represent
the parameters z from L k.

Thus we have for all X 16 2¥ and 8 >, 7,
Lg = ¢(X,2) <= dx € Oglz represents X and Og = ¢(z, 2)]

The effective Borel complexity of “Og = ¢(z,2)” is w - f+ O(1), with a
constant that depends on on ¢, specifically on the number of quantifiers
in ¢ (including bounded quantifiers, which will still require an unbounded
search through dom Og in second order arithemetic). This is because H,,.5
uniformly computes the atomic diagram of ©g, so the truth of ¢(z, 2) is
uniformly arithmetic in that diagram.

The effective Borel complexity of “x represents X” is also w- 3+ O(1) using
the second niceness condition in Proposition Let h be a computable
function such that h(n) € dom ©,, represents the number n. Then

“x represents X7 <= Vn[X(n) =1 < O = h(n) € 2.
Therefore, defining
|Ps| == {X €2¥: L = (X, 2)}
we see this set has effective Borel complexity w - § + O(1). Furthermore, the

code ]35 is obtainable and w - 8 + O(1)-ranked, uniformly in 5. We define
N, 3 similarly. Then the desired decorations are

Pg:= Ps\ ( U P,,)
v<«f
and similarly for N3. These decorations are also uniformly w-3+O(1)-ranked.
The computable procedure 3 +— Pg outlined above can also be applied
to elements of O, producing pseudo-ranked decorations for all § <, a.
We apply Theorem to the (w - a)-ranked sets of decorations P and N
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constructed here. The result is a completely determined Borel code in HY P
which defines the set A = Ugco |Psl, as desired. O

5. APPLICATIONS

In light of Theorem we can show that various sets have completely
determined Borel codes in HY P by specifiying an w{*-recursive algorithm
for computing them. This allows us to know what HY P believes about
various theorems involving Borel sets. We have selected some representative
examples from a variety of areas. The reader can surely supply many more
examples than the ones given in this section.

In this section we assume familiarity with a-recursive computations; a
reference is [Sho77]. Theorem also shows that in HY P, the determined
Borel sets and the completely determined Borel sets coincide. In this section,
we simply use the terminology “Borel” to refer to this common concept.

5.1. Well-Ordering and the Prisoner Hat Problem.
Corollary 5.1. In HY P, there is a Borel well-ordering of the universe.

Proof. We will associate hyperarithmetic reals X € 2* with the value o(X) =
(B, e) where 3 is least such that X <7 ()% and e is least such that X = ¢25,
and encode the ordering X <Y if and only if o(X) < o(Y’), where < is the
lexicographic ordering on pairs. Since < is certainly a well-ordering, this will
give the claim.

On input X, Y, our algorithm can search for the first 8 such that either
X <r 0P or Y <7 0%, and we can then check if o(X) < o(Y) by checking
an initial segment of the sets ()’ to see which of X and Y is computed
first. O

Next recall the infinite prisoner hat problem: we assume there is a row of
hat-wearing prisoners with order type w. The hats can be red or blue. The
prisoners are facing toward the infinite end of the line, so that each prisoner
can see all the hat colors in front of them, but not their own hat color or the
color of any previous hat. The prisoners will be asked to name their own
hat color, starting with the Oth prisoner and going in order, so that each
prisoner hears all the previous guesses. They win if they make one or fewer
mistakes in total.

It is well-known (see for example [HT08]) that while the prisoners can win
this game with the axiom of choice, there is no Borel winning strategy for
them. But in HY P, the situation mirrors the real world and does so with
the usual proof.

Formally, a Borel winning strategy for the prisoners is a Borel subset
B C 2<% x 2%, A prisoner who hears the sequence 7 € 2<% and sees the
sequence Y € 2¥ in front of them follows the strategy by guessing blue if
(1,Y) € B and guessing red otherwise.
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Corollary 5.2. In HY P, there is a Borel winning strategy for the prisoners
in the infinite prisoner hat problem.

Proof. By Proposition as part of an wfk—computation, we may search
for the least real which has a given arithmetic property.

The strategy for the prisoners is then defined in the classical way, which
we include for completeness. Each prisoner, hearing 7 and seeing Y, begins
by identifying the least real X which agrees up to finitely many errors with
7707Y. Since all prisoners use the same well-ordering, they all identify the
same X. The Oth prisoner uses their guess to communicate the parity of
errors between X and the rest of the hats. The ith prisoner, upon hearing the
correct guesses of prisoners 1 through ¢ — 1, can then deduce their own hat
color correctly by computing the parity of errors between X and the hats they
have seen and heard. Observe that this prisoner strategy is wfk—computable,
and thus Borel in HY P. O

5.2. Graphs. On the basis of the previous subsection, one might wonder
if any construction that works by choice in the real world would work in a
Borel way in HY P. The next examples show that this is not the case. Recall
that a 2-coloring of a graph G = (V| E) is a function ¢ : V' — 2 that assigns
adjacent vertices to different colors. Classically, a graph has a 2-coloring if
and only if it has no odd cycles. In second order arithmetic, we consider
graphs for which V C 2%. The graph G is Borel if V is Borel and E is a
Borel subset of V' x V.

Proposition 5.3. In HY P, there is a Borel acyclic graph which has no
Borel 2-coloring.

Proof. Fix o* € O* \ O. For each a <, o* and e € w, we fix two distinct
computable reals X, .0 and Xq 1.

We can describe a computation in stages indexed by 8 € O. At the stage
B, we decide all edges between pairs of reals (X,Y’) such that § is least so
that both X and Y are (®-computable.

We consider those o < § and those e so that ¢ga appears to be a Borel
code for a Borel 2-coloring, and § is least so that there are evaluation maps
for both X, 0 and X, ¢ 1 in ¢>2°‘. For each such pair «, e we choose either
one or two fresh reals Turing equivalent to (°, and we add edges to create a
path between X, 0 and Xq 1 of length 2 or 3 (whichever is incompatible
with the colors given to X, 0 and Xqc1). We place no other edges. O

Given k € w, recall that a k-edge-coloring of a graph G = (V, E) is a
function ¢ : E — k with the property that no two adjacent edges are assigned
the same color. Vizing’s Theorem states that if the maximum degree of the
vertices in G is k, for some k € w, then G has an edge coloring with at most
k + 1 colors (see, e.g., [Diel8, Theorem 5.3.2]). In the special case when G
has no odd cycles (i.e., when G is bipartite), Konig showed that G has a
k-edge coloring (see [Diel8, Proposition 5.3.1]). On the other hand, Marks



BOREL COMBINATORICS FAIL IN HY P 13

has shown [Mar16] that there are n-regular acyclic Borel graphs with a Borel
bipartition which require as many as 2n — 1 colors for a Borel edge coloring.

Proposition 5.4. In HY P, for every k > 3, there is a Borel acyclic graph
with vertices of mazximum degree k with no Borel (k 4 1)-edge-coloring.

Proof. Let N = (k;rl) (k—1)41. (We have chosen N so that when N graphs

are put into (kgl) categories, some category contains at least k& graphs.) Fix

a* € O*\ O. For each o <, a* and e € w, we choose distinct computable
reals C’clw, . .,Céxe, Va{e, cen Va]\;, and Wi,e, . .,Wé\’fe.

As in the proof of Theorem we build a graph in stages S € O so that
at stage 3, we determine all edges between pairs of reals (X,Y'), where f3 is
the smallest so that (¥ computes both X and Y.

At stage 8 = 0, for every a <, o* and e € w, and for 1 < i < N, we
connect Voie and Cé’e with an edge, and we connect wa and Cé}e with an
edge. Hence, for each o € O* and e € w, we have N disjoint paths of length
two, each with a central ‘C” vertex and leaf vertices ‘V’ and ‘W’. We will
refer to this collection of N paths as the («,e) computable subgraph.

At stage 8 > 0, we handle all pairs (a, e), where a < § and e € w, such
that ¢2a appears to be a Borel code for a (k + 1)-edge-coloring, and 3 is the
first ordinal after o so that (¥ computes evaluation maps for every edge in
the («, e) computable subgraph. Given such a pair («, e), we select a fresh
vertex X, . that is Turing equivalent to (8. We then find k paths of length
two in the (o, e) computable subgraph that all use the same two colors. For
each of these paths, we connect the central ‘C" vertex to the new vertex X .
The given (k + 1)-edge-coloring of the (o, e) computable subgraph cannot
be extended to a (k 4 1)-edge-coloring of the extended graph, for X, . has
degree k, and there are only k — 1 colors available for its edges.

O

In Propositions and the graph-builder has a source of power
because the graph-colorer is not able to wait to see all the neighbors of a
given vertex. If we restrict attention to connected graphs or to d-regular
graphs, the graph-colorer may now have the upper hand.

Proposition 5.5. In HY P, every connected Borel graph with no odd cycles
has a Borel 2-coloring.

Proof. Let E be a Borel code for the edges of the graph.

Fix a real Xy. At stage 8 of our computation, we consider those X such
that (§ is least so that there exist Xog,..., X, <r 0% with X,, = X and
evaluation maps go, ..., gn_1 <7 0 witnessing that (X;, X;41) € |E| for all
1< n.

We color X by taking the first such path and coloring X with 0 if and only
if n is even. Since the graph is assumed to be connected, each X is colored
at some stage (. Since the graph has no odd cycles, this is a well-defined
2-coloring. O
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For the rest of this section, d is any natural number.

Lemma 5.6. Suppose G is a Borel d-reqular graph in HY P. Then for
every X € V(G), there is a computable ordinal § such that 08 computes an
enumeration of the connected component of X together with all evaluation
maps needed to verify the component.

Proof. Observe that for each X, there are exactly d neighbors, each hyper-
arithmetic, and, for each neighbor, a single evaluation map is needed to
verify the edge, which is also hyperarithmetic. So there is a unique least
computable ordinal 3 large enough that (% computes X, all d neighbors, and
all d evaluation maps witnessing the edges. Similarly, for each distance k,
there is a least 3 such that (¥ computes everything needed to enumerate
and verify the set of vertices at distance at most k from X. Here is where
it is used that G is d-regular: for each k this least 5 can be recognized in a
¥1 way. Thus by ¥i-bounding, there is some 8 € O such that 08 computes
all vertices and edge-witnesses of the connected component of X. With
another couple of jumps, these vertices and witnesses can be enumerated in
an organized way. O

Proposition 5.7. In HY P, every Borel d-regular graph with no odd cycles
has a Borel 2-coloring.

Proof. Each real in X has a countable connected component in the given
Borel graph. In particular, if we are given a set Y whose columns consist of
all the path-neighbors of X together with all the evaluation maps needed
to verify them, we can verify in a hyperarithmetic way that it really is the
entire connected component. By Lemma if we search for such Y, we will
find one.

At stage 3, we will color those X such that j3 is least so that ¥ computes
an enumeration of the connected component of X together with all evaluation
maps needed to verify the component.

When we find such an enumeration, we choose the one whose index (that
is, the e such that ¢2" is the desired enumeration) is least, and color each
X in the component based on whether it has even distance to the vertex
listed first in ¢Eﬁ. Since the graph has no odd cycles, this is a well-defined
2-coloring. O

Proposition 5.8. In HY P, every Borel d-regular graph has a Borel (d+1)-
edge-coloring.

Proof. Suppose E is a Borel d-regular graph in HY P. At stage (3, we consider
the connected components of F for which § is the least ordinal such that
08 computes an enumeration Y of the vertices in the component, together
with all evaluation maps needed to verify the edges. (By Lemma every
connected component of E will be handled at some stage 3.) Given such a
connected component C, we pick the least such enumeration Y (the one given

by the least e such that the columns of Y = ¢>25 enumerate the component
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with all supporting evaluation maps). We use the ordering of the vertices of
C given by Y to obtain a ()*-computable (d 4 1)-branching tree T, whose
nodes represent partial (d 4 1)-edge-colorings of C'. By Vizing’s Theorem
(see [Diel8, Theorem 5.3.1]), T has an infinite path. We use the left-most
path (computable in §+1) to assign colors to the edges in C. ]

We finish out this section by showing that Marks’ theorem for perfect
matchings fails in HY P. Recall that given a graph G, a perfect matching
is a subset P C E(G) such that every vertex in the graph is an endpoint of
exactly one edge from P. A Borel bipartite graph is a Borel graph which
has Borel 2-coloring to witness that it is bipartite.

Theorem 5.9 (Marks [Marl6]). For every d > 1, there exists a Borel d-
regular bipartite graph with no Borel perfect matching. Furthermore, this
graph can be chosen to be acyclic and Borel bipartite.

Proposition 5.10. In HY P, every Borel d-reqular bipartite graph has a
Borel perfect matching.

Proof. Given a Borel d-regular bipartite graph F, at stage 5 we consider those
connected components of E for which f is the least ordinal that computes
an enumeration of the connected component, together with the sequence of
evaluation maps needed to verify the component.

For each component, we fix the least enumeration Y of that component.
The component itself is d-regular bipartite, and it is well-known (see e.g.
[Diel8|, Corollary 2.1.3]) that every d-regular bipartite graph has a perfect
matching. So the set of perfect matchings for the component can be given
as a non-empty I19(Y) class, and 08+1 can compute its leftmost perfect
matching, which we apply to the connected component being considered.

By Lemma [5.6] every component of F will eventually be found and a
perfect matching computed on it. ([l

Since the theories of hyperarithmetic analysis are among the weakest
axioms strong enough to make sense of Borel sets, the fact that Borel sets in
HY P do not act like the real-world ones is not too surprising. But it does
establish the theories of hyperarithmetic analysis as reasonable base theories
for the more interesting thrust of Marks’ question: whether his theorem
could be proved by measure or category methods.

In particular, we would be curious to know if Marks’ theorem follows from
CD-PB or CD-M. Here CD-M is the principle “every completely determined
Borel set is measurable” (see [Wes20]). This question is slightly different
than the (also open) question of whether the conclusion of Marks’ theorem
can be strengthened rule out a measurable (or Baire measurable) perfect
matching with respect to some Borel measure (or Polish topology) on the
vertices of the graphﬂ The difference arises because we cannot rule out

2When d is even, there are partial results. Conley and Kechris [CK13] generalized a
result of Laczkovich [Lac88| to show that when d is even, there is a d-regular Borel bipartite
graph which has no measurable perfect matching for a certain natural measure.
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the possibility that measure or category is used in some creative way in an
alternate proof, for example by being applied to some object other than the
purported matching.

5.3. Borel Dual Ramsey Theorem. We recall the statement of the Borel
Dual Ramsey Theorem. First, we need some notation.

Definition 5.11. For & € NU {w}, (w)" is the set of partitions of w into
exactly k nonempty pieces. When p € (w)¥, we write (p)¥ for the set of
coarsenings of p into exactly k blocks.

The Dual Ramsey Theorem says:

For all finite k,¢ > 1, if (w)k = CoU---UCy_y where each
C; is Borel then there exists p € (w)* and an i < [ such that
(p)* C Ci.

Theorem 5.12. In HY P, the Borel Dual Ramsey Theorem fails.

Proof. We show this even with k = /¢ = 2.

Given p € (w)* with p = |J; p; and a monotone function f, let us define
f(p) € (w)? so that f(p) = qo U q1 where ¢ = Uipru) and go = w \ ¢1. By a
finite modification of f(p), we mean f(p) = qoUq1 where ¢1 = U;>,, pf(;) and
go = w \ ¢1. The important properties are that the finite modifications are
pairwise distinct and whenever ¢ is a finite modification of f(p), ¢ <r f ®p
and f <7 ¢©p.

For each (3, let fz be a function Turing equivalent to (8+1 and which is
eventually larger than every function computable from (7.

Let pg, cen pg, ... enumerate those elements of (w)“ such that (5 is least

with p,iB < 8. We recursively choose, for each p?, two elements qgo, qgl € (w)?
by letting qgo be the first finite modification of f3 (plﬁ) distinct from all qé’b
with j < 7 and qé’l the first finite modification of fz (pr) distinct from all qé’b
and also qgo.

Observe that if qé’b = qg,’bl then 8 = 3, and therefore i = 7' and b = b': if
B < then ¢ <r for ®pi) <r 07+, while 01 <q 5 <y ply & ¢} and,
since pg <7 0P, we must have ng L 0P,

By construction, for each 3, the qg’b can be uniformly enumerated by 95+

for some k large enough to carry out these computations. So at stage 5 + k,
we color all the qg’o with color 0 and all other elements of (w)? which are
computable from ()®*! which have not already been colored with color 1.
For any p € (w)* N HY P, we have p = pj; for some ¢, 3, and we have
qg’o € Cy and qg’l € Cy, so (p)? € Cp and (p)? € Cy. Therefore the Borel
Dual Ramsey Theorem fails in HY P. O
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