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We show that a computable function f : R — R has Luzin’s property (N) if and only if
it reflects I1}-randomness, if and only if it reflects Al(O)-randomness, and if and only if it
reflects O-Kurtz randomness, but reflecting Martin-Lof randomness or weak-2-randomness
does not suffice. Here a function f is said to reflect a randomness notion R if whenever
f(z) is R-random, then z is R-random as well. If additionally f is known to have bounded
variation, then we show f has Luzin’s (N) if and only if it reflects weak-2-randomness, and if
and only if it reflects (- Kurtz randomness. This links classical real analysis with algorithmic
randomness.

1 Introduction

We revisit a notion from classic real analysis, namely Luzin’s property (N), from the perspective
of computability theory. A function f : R — R has Luzin’s (N), if the image of any (Lebesgue)
null set under f has again measure 0. This concept was studied extensively by Luzin in his
thesis [13]. For functions with bounded variation, this notion is just equivalent to absolutely
continuous functions — but already for general continuous functions, Luzin’s (N) is a somewhat
intricate property. A formal result amounting to this was obtained by Holicky, Ponomarev,
Zajjéek and Zeleny, showing that the set of functions with Luzin’s (N) is IT3-complete in the
space of continuous functions [9].

From a computability-theoretic perspective, Luzin’s (N) is readily seen to be some kind of
randomness reflection: By contraposition, it states that whenever f[A] has positive measure
(i.e. contains a random point for a suitable notion of randomness), then A has positive measure,
too (i.e. contains a random point). It thus seems plausible that for some suitable randomness
notion, Luzin’s (N) for computable functions is equivalent to saying that whenever f(z) is
random, then so is . Our main finding (Theorem is that this is indeed the case, and that
[1}-randomness is such a suitable randomness notion. An indication that this is a non-trivial
result is that our proof uses ingredients such as Friedman’s conjecture (turned into a theorem
by Martin [8) 14, 28]).

While the exploration of how randomness interacts with function application, and the general
links to real analysis, has a long tradition (see e.g. the survey by Rute [21]), the concepts of
randomness preservation (if z is random, so is f(x)) and no-randomness-from-nothing (if y
is random, then there is some random z € f~!(y)) have received far more attention than
randomness reflection. Our results not only fill this gap, but may shed a light on why randomness
reflection has been less popular: As the most natural notion of randomness reflection turns out
to be ITi-randomness reflection, we see that studying higher randomness is essential for this
endeavour.
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Our theorems and proofs generally refer to computability. However, we stress that since the
results relativize, one can obtain immediate consequences in classic real analysis. An example
of this is Corollary which recovers a theorem by Banach. More such examples can be found
in Section 8, where, by applying relativized computability method, we are able to prove some
results in classical analysis. While we are not aware of such consequences that would advance the
state of the art in real analysis, it is plausible that future use of our techniques could accomplish
this.

Overview of our paper In Section [2| we do not discuss randomness reflection at all, but
rather prove a result in higher randomness of independent interest. Theorem [I]is of the form “if
a somewhat random X is hyp-computed by a very random Y, then X is already very random”.
It is the higher randomness analog of [I5, Theorem 4.3] by Miller and the third author. This
result is a core ingredient of our main theorem.

Section contains the main theorem of our paper, the equivalence of Luzin’s (N) for
computable functions with ITj-randomness reflection and with Al(O)-randomness reflection.
We consider higher Kurtz randomness in Section and show that for continuous functions
f:R — R, Luzin’s (N) is equivalent to the reflection of O-Kurtz randomness, and separate this
from Al-Kurtz randomness reflection. In Subsection we discuss the open questions raised
by our main theorem: Just because Luzin’s (N) is equivalent to reflection of several higher
randomness notions does not mean that it cannot be also equivalent to randomness reflection for
some “lower” notions. For Martin-Lof-randomness reflection and weak-2-randomness reflection,
we provide a separation from Luzin’s (N) in Section

In Sections |5/ and |§| we consider Luzin’s (N) for more restricted classes of functions, namely
functions with bounded variation and strictly increasing functions. Here Luzin’s (N) turns out
to be equivalent to weak-2-randomness reflection, but we can still separate it from several other
randomness-reflection-notion. These investigations tie in to a project by Bienvenu and Merkle
[2] regarding how two computable measures being mutually absolutely continuous (i.e. having
the same null sets) relates to randomness notions for these measures coinciding.

In Section [7] we take a very generic look at the complexity of randomness reflection, and show
that the IT}-hardness established for Luzin’s (N) in [J] applies to almost all other randomness
reflection notions, too.

Section [§ contains a brief digression about functions where the image of null sets is small
in some other sense (countable or meagre). We prove these classical analysis results via various
classical and higher computability methods.

We then conclude in Section [9] with a discussion of how this line of investigation could be
continued in the future.

2 Randomness and hyperarithmetic reductions

Throughout, we assume familiarity with the theory of algorithmic randomness and higher ran-
domness in particular. A standard references for the former are [6] and [I7]. For the latter,
readers may refer to [5]. We use standard computability-theoretic notation. The Lebesgue
measure is denoted by A.

Our goal in this section is to establish the following:
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Theorem 1. Let Y be Al(Z)-random and M}-random, let X be Al-random and let X <, Y.
Then X is Aj(Z)-random.

This is a higher-randomness counterpart to [I5, Theorem 4.3], and the proof proceeds by
adapting both this and [15] Lemma 4.2]. We will use the theorem in the following form:

Corollary 2. Let Z > O. If X is Al-random, Y is Aj(Z)-random and X <; Y, then X is
Al(Z)-random.

Lemma 3. Fix a € O and e € N. If X is A{-random, then:
3o ¥n A{Y | (Y € [X1n]}) < 277F°

Proof. Analogous to the proof of [I5, Lemma 4.2]. Let H, = {Y | ¢e(Y(®) € [0]}, and then
let F; = {0 | \(Hy) > 271°*%}. By construction, the H, are uniformly A%, (as subsets of
{0,1}"), and so the sets F; are uniformly A2, (as subsets of 2<%).

A counting argument shows that A([F;]) < 27% Pick a prefix free set D C F; with [D] = [F}].
Then:

12 M Ho) =D AHy) = D 27l = 2ix([F)])
oeD oeD oceD

We see that ([F}])ien is a Martin-Lof test relative to §+2. Since X is Al-random, there has
to be some ¢ € N with X ¢ [F,]. This in turn means that Yn € N X,, ¢ F.., which by definition
of F, is the desired claim. O

Fact 4 (Sacks [22]). Al(Z)-randomness (defined by being contained in no Al(Z)-null sets) is
equivalent to being Z-random for every Z € A}(Z).

Lemma 5. Fix a € Oand e e N. If X = gpe(Y(a)), X is Al-random and Y is Al(Z)-random,
then X is Al(Z)-random.

Proof. We follow the proof of [I5 Theorem 4.3]. Let ¢ be the constant guaranteed for X by
Lemma [3, As in the proof of Lemma [3| let Hy = {W | @.(W®) € [0]}. Let G, = H, if
AHy) < 27l7+¢ and G, = 0 else. Note that G, is still uniformly Al. The choice of ¢ in
particular guarantees that Y € G Xin for each n € N.

Let N, U, denote a Martin-Lof test relative to Z for some Z € Al(Z). By Fact |4} it suffices
to show that X ¢ N,U,. We set K; = UGGUCH Go, and K = (,cy Ki. We find that K is AL(Z).
Moreover, we have that:

AME) < D0 MGy < Y 27lre <o

o€Ucti oc€Ucq

Hence, it follows that A(K) = 0, so for some i, Y ¢ K;. Then X ¢ U.4;, because Y € G, for all
o< X. ]

Fact 6 (Sacks [22]). If Y is II}-random, then w{® = w?KY.

Proof of Theorem[d. Since Y is II}-random, we know that X <; Y implies the existence of some
o« € O and e € N such that X = ¢ (Y(®) (rather than merely & € @). We can thus invoke
Lemma [5[ to conclude that X is Aj(Z)-random. O
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As an aside, the requirement in Theorem [1| that Y be ITi-random might be unexpected at
first — it has no clear counterpart in [I5, Theorem 4.3]. The following example, which is not
needed for anything else in the paper, shows that this assumption is necessary.

Example 7. There are Al-random X and Al(Z)-random Y with X <, Y but X is not A}(Z)-
random. In fact, we shall chose X = Z, and make X even II}-random.

Proof. Let Y be a Al-random satisfying Y > O. The existence of such a Y was shown in [4].
Let X be Martin-Lof random relative to Y @ O while satisfying X <; Y. This choice ensures
that X is IT}-random (so in particular Al-random).

By van Lambalgen’s theorem relativized to 0(®, if both X and Y are Al-random, then for
any a < wi it holds that X is Y @ @(®-random iff X @Y is (®-random iff Y is X @ (®)-
random. Since by choice of X, we know that in particular X is Y & 0(®)-random, we conclude
that Y is X @ 0(®-random.

From ([3, Corollary 4.3]) it follows that for IT}-random X and 8 < w{¥ it holds that X(#) <
X @0, (The conclusion above surely does not require full II}-randomness of X, but too much
precision would take us afield.) Together with the above, this shows that Y is X (@)_random for

every a < w?K. Since X is II}-random, by Fact @ we have that w?K = wa’X, and thus that
Y is Z-random for any Z € A}(X). By Fact 4] this establishes Y to be A}(X)-random. But
trivially, X cannot be A}(X)-random. O

3 Luzin’s (N) and randomness reflection

Definition 8. A function satisfies Luzin’s (N) iff the image of every null set is null.

Definition 9. For any randomness notion R and a function f, we say that f reflects R-
randomness if f(x) is R-random implies x is R-random for all  in the domain of f.

3.1 Luzin’s (N) and higher Martin-L6f randomness reflection

By noting that the sets of points not Martin-Lo6f random relative to some oracle are canonical
choices of null sets, we obtain the following:

Proposition 10. The following are equivalent for a computable function f: R — R:
1. f satisfies Luzin’s (N)
2. Vp € {0,1}N 3¢ € {0,1}" f(z) € MLR(q) = = € MLR(p)
3. Vp e {0,1}" f(z) € Al—random(p) = x € MLR(p)
4. Vp € {0, 1} f(z) € Al—random(p) = x € Al—random(p)
Proof. 1. < 2. Each null set is contained in a set of the form MLR(q)® for some oracle ¢ €

{0, 1}N. Luzin’s (N) is thus equivalent to saying that for any p there is a ¢ with f[MLR(p)¢] C
MLR(q). Taking the contrapositive yields (2).

2. = 3. Any Yl-null set is contained in a Ai-null set ([22]). Thus it suffices to choose ¢ as
something hyperarithmetical in p.

3. = 1. Trivial.
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3. = 4. Assume that (4) fails, i.e. that there is some p € {0, 1} and some = ¢ Al—random(p)
with f(z) € Al—random(p). But if z ¢ Al—random(p), then there is some ¢ <;, p with
x ¢ MLR(q), but f(r) € Al—random(q) = Al—random(p), hence (3) is violated, too.

4. = 3. Trivial.
O

Corollary 11. A computable function satisfying Luzin’s (N) reflects Al-randomness relative
to any oracle.

We can now ask whether reflecting Al-randomness relative to some specific oracle already
suffices.

Fact 12 ([14, 28]). If A is an uncountable Ai(y)-class such that y <j z for every z € A, then
there is some x € A with OY <, x.

Fact 13 (Sacks [22]). If O <j x, then x is not A}(O)-random.
Corollary 14. If computable f reflects A}(O)-randomness, then for any Aj(O)-random y we
find that f~!(y) is countable.

Proof. Assume that y is Al(O)-random and f~!(y) is uncountable. Then by Fact there is
some x € f~!(y) with O <j, z. By Fact we find that z is not Aj(O)-random, contradicting
that f reflects Al(O)-randomness. O
Observation 15. The following are equivalent for computable f : R — R:

1. For almost all y it holds that f~!({y}) is countable.

2. For every Ai-random y it holds that f~!({y}) is countable.

Proof. The implication 2 = 1 is trivial. For the other direction, note that

{y | f*({y}) is uncountable}

is X1, This holds because for a Y1-set A, being uncountable is equivalent to containing an
element which is not hyperarithmetic relative to A. Due to Kleene’s HY P-quantification theo-
rem, an existential quantifier over non-hyperarithmetic elements is equivalent to an unrestricted
existential quantifier. By assumption, it is a null set. Any Z1-null set is contained in a Ai-null
set, so it is then contained in a Al-null set, and so cannot contain any Al-randoms. ]

Theorem 16. The following are equivalent for computable f : R — R:

1. f satisfies Luzin’s (N)

2. f reflects Al(O)-randomness.

3. f reflects Af-randomness and for almost all y, f~1(y) is countable.

4. f reflects II}-randomness.
Proof. That (1) implies (2) follows from Proposition To see that (2) implies (1), we show
that if f reflects Al(O)-randomness, then it reflects Al(r)-randomness for all r >7 O. This will
be enough because if f reflects Al(r)-randomness for all r >7 O, then for any p € {0,1}", if

f(z) € MLR(OP®9), then f(x) is Al(p®O)-random, so z is Al (p@ O)-random, so 2 € MLR(p).
Thus f satisfies condition (2) of Proposition
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So let y be Al(r)-random for some r >7 O. By Corollary f~(y) is countable. So if
x € f71(y), then = <j y. Since f reflects A}(O)-randomness, we know that z is Al-random.
We can thus invoke Theorem [1] to conclude that z is Al(r)-random, and have reached our goal.
(Note that y is II}-random because r >7 O.)

To see that (1) implies (3) we use Proposition [10| and Corollary The proof that (3)
implies (1) proceeds analogously to the proof that (2) implies (1), except that we conclude that
f~Y({y}) is countable from Observation [15| rather than Corollary

To see that (3) implies (4), by Observation |15 in fact the inverse image of every Al-random
point is countable. In particular if y is IIi-random, then f~!(y) is countable. We use the
following characterization of IT}-randomness due to Stern: y is II}-random if and only if y is
Al-random and w{ = w{¥ [26, 27, 4]. Recall also that w{ = WK if and only if y %, O ([23,
Corollary 7.7]). Let € f~1(y). By Al-randomness reflection, = is Al-random. Since f~!(y) is
countable, y >, . Thus x %, O. Therefore z is IT-random.

The proof that (4) implies (1) is the same as how conditions (2) or (3) implied (1). Letting
y be Al(r)-random, since r > O then y is II}-random. If f~!(y) were uncountable, by Fact
it would contain some x with @ >}, O, contradicting Ili-randomness reflection. [

3.2 A note on the countability of fibers

We obtain as a corollary a reproof of a theorem by Banach [I], cf. [24, Chapter IX, Theorem
7.3]:

Corollary 17. If f is continuous and satisfies Luzin’s (N), then for almost all y we find that
f~(y) is countable.

The following generalization to measurable functions was also known, but we give a new
proof.

Corollary 18. 1. If f satisfies Luzin’s (N) and there are a continuous function g and a
Borel set A so that f agrees with g on A, then for almost every real y € f(A) we find that
f~1(y) N A is countable.

2. If f satisfies Luzin’s (N) and is measurable, then for almost every real y we find that
f~1(y) is countable.

Proof. (1). Fix a real z so that g is computable in x and A is Af(z). Assume that y is Al (O%)-
random and f~!(y)NA = g~(y)N A is uncountable. Since A is Al(z), by Claim |12 then there
is some z € g7 Yy)NA = f~1y) N A with O% <;, 2@ 2. By Fact we find that z is not
Al(O%)-random, contradicting that g reflects Al(O%)-randomness.

(2). By Luzin’s theorem, there are a sequence Borel sets {4, }new and continuous functions
{9n}new so that R\ |, Ay is null and f agrees with g, over A, for every n. As f has Luzin’s
(N), also f[R\ |J,, A»] is null, and thus can be ignored for our argument. For y ¢ f[R\ |J,, An],
we find that f~'(y) € U,en9n'(y). Since each set in the right-hand union is countable for
almost all y by Corollary [I7] the union itself is countable for almost all y, proving the claim. [

Note that the Borelness of the set A in the corollary above cannot be replaced by “arbitrary
set”, as it is comsistent with ZFC that the corresponding statement is false. For example,
assuming the continuums hypothesis (CH) or the even weaker Martin’s axiom (MA) suffices to

construct a counterexample. We do not know whether the following proposition can be proved
within ZFC.
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Proposition 19 (ZFC + MA). There is a function f : [0,1] — [0,1] having Luzin’s (N) and
a set A C [0,1] such that f|4 is a computable, f[A] is non-null, and for any y € f[A] the set
f~1({y}) N A is uncountable.

Proof. We actually need only a weaker condition than MA for our construction, namely the
equality cof(L) = cov(L) = non(L) in Cichon’s diagram. Recall that cof(L) is the least cardi-
nality of a set R of null sets such that any null set is a subset of an element of R; cov(L) is the
least cardinal o such that [0,1] is a union of a-many null sets, and non(L) is the least cardinal
of a non-null set. It is a consequence of MA that all these cardinals are 2%0. As they all are
clearly uncountable and at most the continuum, CH trivially implies the same. Let x denote
the value of these three invariants.

First, we observe that x = cof(£) means that there exists a family (24)a<x such that a set
A C {0,1}" is null iff A € MLR(24)¢ for some a < . Next, we point out that x = cov(£L)
means that for any o < £ and family (wg)g<q there exists some w which is Martin-Léf random
relative to all wg.

We start with a family (z4)a<x as above, and then choose (z4)a<k such that each z, is
Martin-Lof random relative to any zg for § < a. We then choose another sequence (yq)a<x such
that y, is Martin-Lof random relative to any g @ 2z, for 8,7 < a. We identify {0, 1Y with a
positive measure subset of [0,1] (a fat Cantor set), and then define A = {yg @z, | o < 5 < K},
and f:[0,1] — [0,1] as f(yg ® za) = zo and f(w) = 0 for w ¢ A.

As f|4 is just the projection, it is clear that it is computable. To see that f[A] is non-null,
note that if it were null, it would need to be contained in MLR(z,)¢ for some a < k. But
T4 € f[A] is explicitly chosen to prevent this. For any x, € f[A], we find that f~({z,})NA =
{ys ® zo | & < B < K} has cardinality &, and & is uncountable.

It remains to argue that f has Luzin’s (N). As f is constant outside of A, we only need to
consider null sets B C A. Again invoking van Lambalgen’s theorem, we see that any yg @ z, is
Martin-Lof random relative to z, whenever v < o < 3. As such, each null B C A is contained
in some {yg @z | @ < B < v} for v < k. It follows that f[B] C {z, | & < 7} has cardinality
strictly below &, and hence is null due to ¥ = non(L). O

That all fibers are countable is just preservation of h-degrees:
Observation 20. For computable f : R — R the following are equivalent:

1. f preserves h-degrees, i.e. Vz € [0,1] z =}, f(x).

2. For all y € R, f~!(y) is countable.

3.3 Luzin’s (N) and higher Kurtz randomness reflection

In his thesis [13], Luzin showed that if a continuous function f : R — R fails to have property
(N), then in fact there is a compact witness to this failure. For the reader’s convenience, we
give a proof of this fact below.

Proposition 21. Let f : R — R be continuous and map some null set to a non-null set. Then
there is a compact subset A C R with A(A) =0 and A(f(A)) > 0.

Proof. Observe that a function f : R — R satisfies Luzin’s (N) if and only if its restriction
f T [a,b] satisfies Luzin’s (N) for every closed interval [a,b]. So without loss of generality, we

assume that f fails Lusin’s (N) because p(A) = 0 but u(f(A)) =d > 0 for some A C [a,b]. As
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every null set is contained in a IT3-null set, without loss of generality we can assume A = N,U,
for some decreasing sequence of open sets U, . Each U, is itself equal to an increasing union
of closed sets. The idea is by picking big enough closed F,, C U, , we can find a closed set
ﬂneN F,, C A whose image still has positive measure. How large to pick the F,7 Let Fy C Uy
be large enough that u(f(Fy N A)) > d/2. In general, if we have found (F})i<, such that
w(f(NienF; N A)) > d/2, then since A C U,, we can find closed F,, C U, large enough that
w(f(NicnF; N F, N A)) > d/2 as well. Therefore for all n, we have u(f(Ni<nF;)) > d/2, and
therefore (N, f(Ni<nFy)) > d/2. Claim: N, f(Ni<nFi) = f(NpFy). One direction is clear. In
the other, suppose that y € Ny, f(Ni<nF;). Then M, F, N f~1(y) # O for all n. By compactness,
NnFn N fH(y) # 0. O

As the image of as images of compact sets under continuous functions are uniformly compact,
this shows that Luzin’s (N) implies the reflection of all kinds of Kurtz randomness. This is in
contrast to the situation for Martin-Lof randomness, because the image of a ITJ set under a
continuous f is not even ITJ in general, let alone with the same oracle.

Proposition 22. If f : R — R satisfies Luzin’s (N), then f reflects Kurtz randomness relative

to every oracle.

Proof. Given oracle Z, suppose that = is not Z-Kurtz random because x € F, where F' is a
Z-computable compact set of measure 0. Then f(F) is also a Z-computable compact set, which
has measure 0 because f has Luzin’s (N). Therefore, f(z) is also not Z-Kurtz random. O

An immediate consequence is that any f with Luzin’s (N) also reflects Al-Kurtz randomness
relative to every oracle. In general, Kurtz randomness reflection for stronger oracles implies it
for weaker ones.

Proposition 23. If a continuous function f : R — R reflects Z-Kurtz randomness, then f

reflects X-Kurtz randomness for every X <p Z.

Proof. Assume that f reflects Z-Kurtz randomness. Suppose z is not X-Kurtz random. Let P
be an X-computable compact null set with z € P. Then f(P) is an X-computable compact set,
which is null because P is also Z-computable. Therefore, f(x) is not X-Kurtz random. O

Additionally, any witness to the failure of Luzin’s (N) also provides an oracle relative to
which Kurtz randomness reflection fails.
Proposition 24. Suppose that f: R — R and A C R is a Z-computable compact null set with
A(f(A)) > 0. Then f does not reflect Z-Kurtz randomness.

Proof. Since f(A) is also Z-computable and has positive measure, it must contain some Z-Kurtz
random y. There is some x € A with f(z) = y, but since A is a Z-computable compact null set,
it cannot contain any Z-Kurtz randoms. Hence, f does not reflect Z-Kurtz randomness. O
We can thus characterize Luzin’s (N) in terms of Kurtz randomness reflection.
Theorem 25. The following are equivalent for computable f : R — R:
1. f has Luzin’s (N).
2. For every O-computable compact set A with A(4) = 0 also A(f(A)) =0.

3. f reflects O-Kurtz randomness.
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Proof. 1. = 2. Trivial.

2. = 1. We observe that given computable f : R — R and number n, the set
{A C[—n,n] compact | A\(A) =0AX(f(A)) >27"}

is a I19-subset of the Polish space of compact subsets of [—n,n]. By Proposition if f
fails Luzin’s (N), this set is non-empty for some n. If it is non-empty, it must have an
O-computable element by Kleene’s basis theorem.

1. = 3. By Proposition
3. = 2. By Proposition [24]

We also see that Al-Kurtz randomness reflection does not suffice for a characterization.

Lemma 26. Reflecting Aj-Kurtz randomness is a $i-property of continuous f : R — R.

Proof. By Proposition reflecting Al-Kurtz randomness is equivalent to the statement that
for any Al compact set A with A\(A4) = 0 we have \(f(4)) = 0. By Kleene’s HYP quantification
theorem [IT], 12], a universal quantification over A% can be replaced by an existential quantifi-
cation over Baire space. That A\(A) = 0 implies A\(f(A)) = 0 is a AJ-statement for given f and
A. O

Corollary 27. Reflecting Al-Kurtz randomness is strictly weaker than Luzin’s (N).

Proof. By Proposition Luzin’s (N) implies Al-Kurtz randomness reflection. By Lemma
reflecting Al-Kurtz randomness is a Yi-property. But it was shown in [9] that Luzin’s (N) is
I1}-complete for continuous functions. Thus the two notions cannot coincide. O

3.4 Open questions

Theorems andtell us that Af(O)-randomness reflection and O-Kurtz randomness reflection
each characterize Luzin’s (N) for computable functions. This does not rule out that other kinds
of randomness reflection could also characterize Luzin’s (N). In the next section we shall see that
none of MLR-reflection, W2R-reflection, or MLR()-reflection imply Luzin’s (N) for arbitrary
computable functions (Corollary . Because reflection asks for the same level of randomness
on both sides, there are no completely trivial implications between the IT-type randomness
reflection notions. Indeed, results in [2] suggest that the implication structure between IT9-
type randomness reflection notions may have little relation to the implication structure between
notions of randomness. However, the most interesting open question seems to be:

Open Question 28. Can a computable function reflect Al-randomness but fail Luzin’s (N)?

By Theorem any such example would need to have a positive measure of fibers being
uncountable, which is incompatible with most niceness conditions. We also do not know the
answer to the above question if Aj-randomness is replaced with Martin-Lof randomness relative
to 0(® for any a > 2.

Related questions concern basis theorems for failures of Luzin’s (N). We have already seen
in Theorem [25 that any computable f which fails Luzin’s (N) must see that failure witnessed
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by a O-computable compact set. The proof shows that such a set can also be chosen hyper-
arithemetically low, by applying Gandy basis theorem in place of the Kleene. On the other
hand, Corollary shows that a function which fails Luzin’s (N) need not have a hyperarith-
metic compact witness. Indeed, one can obtain specific examples of this separation by feeding
pseudo-well-orders into the ITi-completeness construction of [9]. Thus the results for compact
witnesses are rather tight overall.

The situation for the minimum complexity of TI witnesses is less well understood. The
proof of Corollary [31| shows that a computable function may fail Luzin’s (N) while still mapping
all rapidly null TI9(@’) sets to null sets. That is, the set MLR(#')¢ is mapped to a null set.

Open Question 29. Can a computable function map W3R to a null set but fail Luzin’s (N)?
Equivalently, can a computable function map all null II(§') sets to null sets while failing Luzin’s

(N)?

We note that the functions produced by the II}-completeness construction of [9] are of no
help because the failure of Lusin’s (N), when it occurs, is witnessed by an effectively null Hg set.

4 Separating Luzin’s (N) from MLR-reflection

We present a construction of a computable function that violates Luzin’s (N), and yet is
piecewise-linear in a neighborhood of every point that is not MLR(()'). Here, we say that f
is piecewise-linear in a neighborhood of z, if there are rationals a < x < b such that f][a’m] and
f ’[z,b} are linear functions. Computable piecewise-linear functions reflect essentially all kinds of
randomness.

Theorem 30. For each I19(()-set A C [0,1] there is a computable function f : [0,1] — [0, 1]
such that:

1. For every x € [0,1] \ A, f is piecewise-linear on a neighbourhood of z.
2. For every € > 0, there is a null TIY(()"") set B C A such that A\(f[B]) > A\(A) —e.

Corollary 31. There is a computable function f : [0,1] — [0, 1] that reflects ML-randomness,
weak-2-randomness and ML(()')-randomness, yet does not have Luzin’s (N), nor reflects weak-
3-randomness.

Proof. Let A be the complement of the first component of a universal ML(()’)-test. Then A(A) >
3. We invoke Theoremon A and € = 7. The resulting function is the desired one: If z € [0, 1]
is not ML()’)-random, then = ¢ A, f is piecewise-linear on a neighborhood of z, and thus f(x)
is not ML(()')-random. As such, we conclude that whenever f(x) is ML(()/)-random, then so is
x (same for the other notions).

Since we can choose the witness B as being II{(0"), it is also II((), and thus contains
only elements which are not weak-3-random. Since f[B] has positive measure, it contains a
weak-3-random — hence f does not reflect weak-3-randomness. O

We remark that this is the strongest result possible for the strategy we are using. We are
making sure that f reflects MLR(()/')-randomness by making f piecewise-linear in a neighborhood
of every non-MLR(()’) point. However, the following proposition shows that the set of points
where f can be this simple has a descriptive complexity of £9((). But the weak-3-non-randoms
are not contained in any £9(()') set except [0, 1].
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Proposition 32. Let f : R — R be computable. The set of points where f is locally piecewise-
linear is X9(().

Proof. We consider the property 2L of a function f and an interval [a,b] that there is some
T € [a,b] such that both f|, . and f[, 5 are linear. We first claim that this is a 19-property.
To this, we observe that 2L is equivalent to:
j 4+ 1 4+ 1 |+ 2
YneNJi<n (Vj €{0,...,n—2}\{i—1,4,i + 1} f(a—i—%)—f(a—&-%) :f(a—&—%)—f(a—!—j:; ))

Next, we observe that f is locally piecewise-linear in x iff there is some rational interval
(a,b) > x such that f has property 2L on [a, b]. Using (), we can enumerate all these intervals. [

Generalizing this idea slightly, recall that a function is bi-Lipschitz, if both the function and
its inverse are Lipschitz functions, i.e. if there exists some constant L such that d(f(z), f(y)) <
Ld(z,y) < L?d(f(x), f(y)) for all z,y in the domain. Since computable locally bi-Lipschitz
functions preserve and reflect all kinds of randomness, Another way for f to ensure a given
notion of randomness reflection is by being locally bi-Lipschitz on the non-random points for
that notion. However, we still get a X9(')-set of suitable points.

Proposition 33. Let f : R — R be computable. The set of points where f is locally bi-Lipschitz
is 29(0").

Proof. The following is a co-c.e. property in a,b € Q and L € N and f € C(R,R):

Va,y € [a,b] d(z,y) < Ld(f(2), f(y)) < L*d(z,y)

We obtain the set of points where f is locally bi-Lipschitz by taking the union of all (a, b) having
the property above for some L € N — access to (' suffices to get such an enumeration. O

4.1 High-level proof sketch

Before diving into the details of the proof of Theorem [30| we give a high-level sketch of what is
going on. Consider first the case where A is H(l). Then A = N, A,, where each A,, is a finite
union of closed intervals and A,,+1 C A,. We iteratively define a sequence of piecewise linear
functions fo, fi1,..., where fy : [0,1] — [0,1] is the identity, and f,, is obtained from f,,—; by
performing a “tripling” operation on those line segments of f,_1 which are contained in A,,. In
order to “triple” a line segment, we replace it by a zig-zag of three line segments each of which
has triple the slope of the original. (See Figure [1]) We want to make the sequence (f,,) converge
in the supremum norm, so before tripling we add invisible break points to f,,_1 so that none of
its linear pieces are more than 27" tall. Letting f be the limit function, observe that if x ¢ A,,,
then f coincides with f,, on a neighborhood of z, and thus f is linear on a neighborhood of z.
On the other hand, A is then exactly the set of points where we tripled infinitely often.

Next we describe how to find a closed set B C A such that u(f(B)) > u(A). (The ¢ in the
statement of the theorem exists in order to bring down the descriptive complexity of B, but we
can ignore it for now.) We want B C A, so of course we throw out of B any interval that leaves
A. Also, every time we perform a tripling, we choose two-thirds of the tripled interval to throw
out of B. We do this so that the one-third which we keep has maximal measure of intersection
with A. Observe that u(B) = 0.
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Here is why u(f(B)) > p(A). Let By = [0, 1] and let B,, denote the set of points that remain
in B at the end of stage n. By induction, f, [ B, is injective (except possibly at break points)
and p(fn(BnNA)) > p(A). The key to the induction is that by the choice of thirds, we always
have 3"u(B, N A) > p(A), and since f,, has slope +£3" on all of B,, and is essentially injective,
w(fn(BnNA)) = 3"u(ByNA). It now follows that p(fn(Br)) > p(A) for all n. Furthermore, since
the continuous image of a compact set is uniformly compact, we cannot have u(f(B)) < u(A),
for this would have been witnessed already for some u(f,(By)). This completes the sketch for
the case where A is I1Y.

If Ais H(l](@’ ), we can do essentially the same construction, tripling on the stage-n approxi-
mation to A, instead of A,, itself. Any interval which is going to leave A eventually leaves the
approximations for good, so the key features of the above argument are maintained even as the
structure of the triplings gets more complicated.

4.2 Proof of Theorem

The remainder of this section is devoted to the preparation for the proof of Theorem [30] and
the proof itself.

Lemma 34. Given a I19((')-set A C [0,1] and some open U 2 A we can compute some open V
with A C V C U such that d(V,U%) > 0.

Proof. Since U® and A are disjoint closed sets, there is some N € N such that d(U¢, A) > 27V,
If we actually had access to A, we could compute a suitable N. Since A is computable from
(Y, we can compute N with finitely many mindchanges. The monotonicity of correctness here
means we can actually obtain suitable N € N.. We now obtain V by enumerating an interval
(a,b) into V once we have learned that U covers [a — 27V, b+ 27N] (which is semidecidable in
UeOMR)and N € N.). O]

For an interval [a, b], let Ty([a, b]) = [a,a—l—b_T“], T ([a,b]) = [a—l—b_?a,a—l&b_T“] and Ts([a,b]) =
[a + 2552, b].

Lemma 35. Let A be a II9(() set. Then there is a computable double-sequence (I¥)g nen of
closed intervals with the following properties:

1. A= ﬂnEN UkeN Irli'

2. IF and I! intersect in at most one point.

3. For m < n, we find that (J; oy I¥ has positive distance to the complement of Uren IF.
4. Vk,n € N |IF| > |1k

5. Fix n > 0. For each k there are ¢, i such that |I¥| < 372|I¢_,| and I} C T;(I}_)).

Proof. Any IIY(#/) is in particular II3, and thus has II9-approximation A = (", oy Un. We invoke
Lemma inductively first on A and Uy to obtain Vg, then on A and Uy NV to obtain V7,
and so on. This will ensure Condition (3). We can effectively write any open set V,, C [0, 1] as
a union of closed intervals such that the pairwise intersections contain at most one point. To
make Conditions (4,5) work it suffices to subdivide intervals sufficiently much. O

Definition 36. An interval J is well-located relative to (Iql—f)k,nENa if for all k,n one of the
following hold:
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1 |JnIk <1
2. JDO Ik
3. J C T;(IF) for some i € {0, 1,2}

For well-located .J, let its depth be the greatest n such that J C I¥ for some k. We call two
well-located intervals Jy, J; peers, if whenever J, C I,’f for both b € {0,1} and some k,n, then
there is one i € {0, 1,2} such that J, C T;(I¥) for both b € {0,1}.

Note that our requirements for the (IX); ey in Lemma in particular ensure that each I}
is well-located relative to (I,{f)n,keN-

Definition 37. We are given a double-sequence (I%); ey for a set A as in Lemma and
e > 0. Let N, € N be chosen sufficiently large such that (U, IF) < 3727 2¢. Let
bem € {0,1,2} be chosen such that A(Ty, , (IX) N A) + 3727737 kc > N(T.(IF) N A) for all
k,n € N and c € {0,1,2}. Let ¢, and i, j be the witnesses for Condition 5 in Lemma We
then inductively define J§ = {I} | k < Ny} and:

3 ={I} |k < Ny ALM € Tn1 Ay, (nm1) = ink}

In words, the intervals in J5, are those on the n-th level which occur inside a particular third
of their parent intervals on the n — 1-st level which has the maximal measure of its intersection
with the set A. By construction, the intervals in J,, are pairwise peers.

Lemma 38. Starting with a I1{((')-set A, we can compute the sets J5 relative to §".

Proof. As the double-sequence (Iﬁ)k,neN is computable, we can obtain the sufficiently large
N, by using (/. We have T.(I¥) N A available to us as II{(()-sets, so (" lets us compute
MT.(I¥) N A) € R. Then getting the choices for the by, right can be done computably. The
witnesses £y, i,in 1 can also be found computably. O

Lemma 39. 37" > A\(JJ5) > 37"(A(4) —¢)

Proof. We prove both inequalities by induction. For the first, the base case is trivial. For

the induction step, we note that ((UJ711) € Urese Thy, (IF), and that A (Ulﬁeji Tbk’n(lﬁ)> =
AU,

For the second inequality, we prove a stronger claim, namely that A(ANJJ5) > 37" (A(A) —
(1—27""1)e). The base case follows from |J .y I§ 2 A together with the choice of Ny. We then
observe that AN (JJ¢,,) = ANU{IF,, | 31 € 3¢ 3i € {0,1,2} I}, C Ti(I})}. By definition
of by, in Definition 37 this also means that A(AN (JJ5,)) +37 27" 2 > 37N ANU{IF,, |
3L e 35 IF,, C T, . (I)}). The set on the right hand side differs from (JJ% only by the
fact that in the latter, we restrict to £ < N,. By the induction hypothesis together with the
guarantee that AUy y, Ih) < 37"27" % we get the desired claim. O

Lemma 40. For a sequence (Iﬁ)lmeN as in Lemma [35| and = ¢ A, it holds that there exists
some a < z < b and some N € N such that I¥ N (a,b) = 0 for every n > N.

Proof. If x ¢ A, then there is some N with = ¢ (J,cy 5. By Condition (3) of Lemma ﬁ, we
have that = has positive distance to |,y Ih. 1, hence there exists an interval (a,b) around
disjoint from J;cp I J’% 41, and by monotonicity, also from (J;cy IF for every n > N. O
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Proof of Theorem [3(. Preparation: We note that for each I19-set A and each n € N, there is
a I (()-set C with C C A and A\(C) > A(A) —27". We can assume w.l.o.g. that A is already
I19((%"). We then obtain a computable double-sequence (IX)y nen as in Lemma [35]

Construction: We obtain our function f as the limit of functions fy x for N, K € N. fy g is
the identity on [0, 1]. The construction of fy ¢ takes into account only intervals I¥ with n < N
and |I¥| > 275 of which there are only finitely many (and by monotonicity of the enumerations,
we can be sure that we have found them all). We process intervals with smaller n first, and
replace the linear growth f currently has on I* by a triple as shown in Figure Property 5
from Lemma [35| ensures that through the process, the function is linear on each interval I¥ yet
to be processed. We then define fy :=limg_, fnv x and f:=limy_o0 fN.

Figure 1: Demonstrating the interative construction of the function f in the proof of Theorem

That the first limit has a computable rate of convergence follows from the monotonicity of
|T¥] in k. Since the size of the intervals shrinks sufficiently fast compared to the potential growth
rates of fx, we see that we also do have a computable rate of convergence of (fn)nen-

Property 1: If + ¢ A, we can invoke Lemma [40| to obtain a neighbourhood U of x that
is disjoint from any I,’f for n > N. But that ensures that f|y is 3"-Lipschitz, and and by
potentially restricting the interval further we can make f locally bi-Lipschitz.
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Lemma 41. 1. Let J be well-located at depth N. Then f[J] = fn[J].
2. Let J be well-located at depth n. Then A(f[J]) = 3"A(J).
3. Let Jy, J1 be peer well-located intervals. Then |f[Jo] N f[J1]| < 1.

Proof. 1. First, we observe that for any M > N it holds that fy/[J] = fn[J], since all
modifications based on intervals I* with n > N will affect f|; at most by locally replacing
the shape of the graph with a different shape having the same range. It remains to argue
that the identity of the image fys[J] is preserved by limits. Since [0,1] is compact and
Hausdorff, we find that A([0, 1]) = KC(]0, 1]), hence we can compute g[J] € A([0, 1]) from
g and A € A([0,1]). We have access to g[A] € V([0,1]) given A € V([0,1]) anyway. Since
A([0,1]) A V([0,1]) is Hausdorff [19], this yields the claim.

2. By (1.), it suffices to show A(fy[J]) = 3"A\(J) instead. Now (fy,)|s is just a linear function
with slope 3", which yields the claim.

3. If Jp, J1 are peers and well-located, and Jy C I,’f but J; ¢_ Iff, then I,’f and J; are also
peers. It thus suffices to prove the claim for the case where Jy = ISE’H and J; = Irlfﬂrl.
These are both contained in the same T;(I%), and ( f)lryrey 1s a linear function. Since
|Jo N Ji| <1 it follows that | f,[Jo] N fu[J1]] < 1. By (1.), this already yields the claim.

O

Property 2: We obtain the desired set B as B = [,y (IUJ7,). Since each Jj, is a finite
collection of closed intervals, B is indeed closed. Since the intersection is nested and \(|JJ5) <
37" by the first part of Lemma we conclude that A(B) = 0. Since the intervals in J5, are
well-located and pairwise peers, we know that A\(f([UJ%])) = 3"A(UTE) by Lemma [41] 2&3.
Invoking the second inequality from Lemma 39| then lets us conclude A(f([JT5])) > (A(A) —e).
Since this estimate holds for every stage of a nested intersection of compact sets, it follows that
A(f[B]) > A(A) —¢ as desired. That B is obtainable by an oracle of the claimed strength follows
from Lemma [38 O

5 Luzin’s (N), absolute continuity and bounded variation

We recall the definitions of absolute continuity and bounded variation:

Definition 42. A function f : [0,1] — R is absolutely continuous, if for every € > 0 and every
To <y <1 <Yp... <zl <Y thereis a § > 0 such that:

Yi<klyi —xil <6 = Ei<k|f(yi) — flxi)] <e.

Definition 43. A function f : [0, 1] — R has bounded variation, if there is some bound M € N
such that for any £ € N and any zg < z1 < ... < zp it holds that

Sicklf(@iv1) — f(z)| <M
Being absolutely continuous implies having bounded variation. These notions are related to
Luzin’s (N) by the following classical fact:

Fact 44 (see [24], Theorem VIL.6.7). A continuous function is absolutely continuous iff it has
both bounded variation and Luzin’s (N).
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We observe that being absolutely continuous is a Hg-property, and recall that Luzin’s (N)
is IT{-complete [9]. As such, restricting our attention to functions of bounded variation should
alter the situation significantly.

Proposition 45. If f : [0,1] — R is computable and absolutely continuous, then f reflects
weak-2-randomness.

Proof. First, we consider how we can exploit connectedness of R to say something about the
images of open sets under computable functions. We are given open sets in the form U = | J;c s,
where each I; is an open interval with rational endpoints. We can then compute sup f(I;) and
inf f(I;) (as these are equal to max f(I,,;) and min f(I,;), and we can compute minima and
maxima of continuous functions on compact sets). Let V' = [J;cn(inf f(1;),sup f(1;)). We note
that we can compute V' from U, that V C f[U], and that f[U]\V can only contain computable
points. In particular, A\(V') = A(f[U]).

Now we assume that f additionally is absolutely continuous, and that we are dealing with
a Y-null set A = (1), oy Uy witnessing that some z € A is not weak-2-random. We assume that
Unt1 C Uy,. As A is null, we know that lim, o, A(U,) = 0. Since f is absolutely continuous,
we also have lim,,_, f[U,] = 0. Let V,, be obtained from U, as in the first paragraph, and
B = ,en Va- It follows that A(B) = 0, and moreover, f[A] is contained in B with the potential
exception of some computable points. So we can conclude that f(x) is not weak-2-random,
either because f(z) is computable, or because f(z) € B. O

Note that if we had started with a Martin-Lof test in the argument above, we would have no
guarantee of ending up with one, because the modulus of absolute continuity is not computable
in general. Indeed, absolute continuity does not imply MLR reflection. See Corollary
Lemma 46. If f : [0,1] — R is computable, has bounded variation, and reflects ('-Kurtz
randomness, then f has property (V).

Proof. Suppose that f does not have (V). Since f has bounded variation, it must fail absolute
continuity. Let € > 0 be such that for all § > 0, there is a finite union of intervals A; C [0, 1]
with u(As) < ¢ and p(f(As)) > e. Computably, given § we can find such As by searching. Let
A = NyUy,, where U, = UpsnAy-m. Then A is 19, and pu(A) = 0, and (N, f(Uy,)) > e. We
claim that its subset f(A) also has pu(f(A)) > e. Let Vary : [0,1] — R denote the cumulative
variation function of f, defined by setting Vars(x) to be equal to the variation of f on [0,x].
Since f has bounded variation and U,4+1 € Uy, >, Vary(Uy, \ Un41) is finite, so by choosing N
large enough, we can make ) p(f(Upn \ Uny1)) as small as we like. Now observe that no
matter how large N we choose,

n n>N
This proves the claim. We have found a II9 set A = N,U,, which witnesses the failure of (V).
Observe that for any c.e. open set U, u(f(U)) is c.e.. Therefore, since f has bounded
variation, (' can search around to find, for each n, a closed set F,, C U, such that u(f(U,\Fy)) <

27"2¢. The existence of such a closed set is guaranteed by f having bounded variation.
Let FF =nNyF,. Then F C Aand A\ F =U,(A\ F,). So

PFANF) <Y p(f(ANF)) <Y p(f(Un\F) <Y 27" e <e.
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The positive measure of f(F') then follows as

e < pu(f(A) < p(fANF)) + p(f(F)).

Therefore, F' is an (/-computable closed set of measure zero whose image has positive measure.
So f does not reflect ('-Kurtz randomness. O

Theorem 47. The following are equivalent for computable functions f : [0,1] — R having
bounded variation:

1. f has Luzin’s (N).

2. f reflects weak-2-randomness.
3. f reflects ('-Kurtz randomness.
4. f reflects Al(O)-randomness.

5. f reflects Z-Kurtz randomness for any Z > (.

Proof. The implication from (1) to (2) is given by Proposition To see that (2) implies (3),
first observe that weak-2-randomness reflection implies that u(f(A)) = 0 for any null I3 set
A, for if f(A) had positive measure then it would certainly contain weak-2-random elements.
A TI(') set is in particular I19, so the image of any (/-Kurtz test has measure 0, and is thus
also an (-Kurtz test because the continuous image of a compact set is uniformly compact. The
implication (3) = (1) is in Lemma [46]

Finally, the equivalence of (1) and (4) is just Theorem the implication from (1) to (5) is
Proposition and the implication from (5) to (3) is Proposition O

Corollary 48. If a computable function f : [0,1] — R of bounded variation reflects ML-
randomness, then it has Luzin’s (N).

The converse is false; see Corollary
Proof. The same argument works as for the implication (2) = (3) in Theorem O

In this section we have stated all results for f : [0,1] — R because this is a natural setting in
which to consider functions of bounded variation. Of course, our pointwise results are equally
true for any computable f : R — R which is locally of bounded variation.

An often useful result about continuous functions of bounded variation is that they can be
obtained as difference between two strictly increasing continuous functions. In light of our in-
vestigation of Luzin’s (N) for strictly increasing functions, one could wonder why we are not
exploiting this property here. There are two obstacles: One the one hand, the computable
counterpart of the decomposition result is false: There is a computable function of bounded
variation, which cannot be written as the difference between any two strictly increasing com-
putable functions [29]. On the other hand, Luzin’s (N) is very badly behaved for sums. For
example, for every continuous function f having Luzin’s (N) there exists another continuous
function ¢ having Luzin’s (N) such that f + ¢ fails (N) [20].
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6 The relationship to absolute continuity of measures

For increasing functions we see a connection to absolute continuity of measures. Recall that a
measure (4 is absolutely continuous w.r.t. a measure v (in symbols p < v), if v(A) = 0 implies
that u(A) = 0. The notions are related through the following observations:

Observation 49. If continuous surjective f : [0,1] — [0,1] is increasing, then the probability
measure i defined as p(A) = A\(f(A)) is non-atomic, and p < A iff f has Luzin’s (N).

Observation 50. If 1 is a non-atomic measure on [0, 1], then its cumulative distribution function
cdf,(x) := p([0,z]) is a continuous increasing function which has Luzin’s (N) iff p < A

In [2], Bienvenu and Merkle have done an extensive survey of the conditions under which
two computable measures p and v share the same randoms for a variety of notions of random-
ness (Kurtz, computable, Schnorr, MLR, and weak-2-random). Two trivial situations where
p-randomness and A-randomness fail to coincide is if p has an atom or if u(J) = 0 for some
open interval J. When discussing the connections among Luzin’s (N), randomness reflection,
and coincidence of randomness notions, we will restrict our attention to computable measures
p which avoid these two degenerate situations. When p is atomless, cdf,, is continuous and
computable. To say p(J) > 0 for all open intervals J, it is equivalent to say that cdf,, is strictly
increasing. When the degenerate situations are avoided, cdf, is a computable homeomorphism
of [0, 1], so cdf;1 is also a computable homeomorphism. In this situation, randomness reflection
for cdf,, is exactly randomness preservation for cdf;l.

Proposition 51. Let p be a non-atomic computable probability measure on [0, 1] with cdf),
strictly increasing. Then x is u-MLR (p-Schnorr random, p-Kurtz random, p-Al-random) iff
cdf,,(x) is Martin-Léf random (Schnorr random, Kurtz random, Al-random) w.r.t. the Lebesgue
measure.

Proof. For any set A, we have u(A) = A(cdf,(A)), and cdf, and cdf;1 are both computable
homeomorphisms.  We can thus move any relevant test from domain to codomain and vice
versa. 0

Therefore, cdf,, reflects a given notion of randomness exactly when the p-randoms are con-
tained in the A-randoms for that notion of randomness. Similarly, cdf;1 reflects a given notion
of randomness exactly when the A-randoms are contained in the py-randoms.

Using our previous results, we obtain the following corollary. The equivalence of (1) and (4)
was proved in ([2, Proposition 58]), but the others are new.

Corollary 52. The following are equivalent for a computable probability measure pu.
1. p is mutually absolutely continuous with the Lebesgue measure.
2. cdf, is a homeomorphism and both cdf,, and cdf;1 have Luzin’s (N).
3. p-Al(O)-randomness and Al(O)-randomness coincide.
4. p-weak-2-randomness and weak-2-randomness coincide.
5. p-Kurtz(())-randomness and Kurtz(()')-randomness coincide.

Proof. First observe that in all cases above, cdf,, is a homeomorphism. That is because none of
the cases is compatible with p having an atom or assigning measure 0 to an interval.
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Then (1) <= (2) follows from Observation 50| for the case of cdf,,, and by similar reasoning
for the case of cdf;l.

Since cdf, and cdf;1 are computable functions of bounded variation, by Theorems and
they have Luzin’s (N) if and only if they reflect each kind of randomness mentioned in (3)-(6).
So the implications (2) <= (3),(2) <= (4), and (2) <= (5) now follow from Proposition
G1l O

Bienvenu and Merkle also give some separations. In particular, they show as [2, Proposition
51 a)] that there exists a computable probability measure p which is mutually absolutely con-
tinuous with Lebesgue measure, but u-MLR does not coincide with A-MLR, p-Schnorr random
does not coincide with with A-Schnorr random, and p-computably random does not coincide
with A-computably random. Essentially, u is obtained by thinning out the Lebesgue measure
around Chaitin’s € in a way that derandomizes (2 without introducing new null sets.

Corollary 53. Luzin’s (N) does not imply any of Martin-Lof randomness reflection, Schnorr
randomness reflection nor computable-randomness reflection; even for strictly increasing com-
putable functions.

Proof. If Luzin’s (N) were to imply reflection for any of these kinds of randomness, they could
be included in the list in Corollary [52] by the same reasoning, but this would contradict Bienvenu
and Merkle’s result above. O

We still need to discuss reflection of (unrelativized) Kurtz randomness. In [2, Proposi-
tion 56], Bienvenu and Merkle construct a non-atomic computable probability measure p such
that p-Kurtz random and Kurtz random coincide, yet makes the Lebesgue measure not abso-
lutely continuous relative to p. The construction is based on an involved characterization of
2-randomness in terms of Kolmogorov complexity obtained by Nies, Stephan and Terwijn [18].
We could already conclude that Kurtz randomness reflection does not imply Luzin’s (N) from
this, but instead we will provide a direct, more elementary construction in the following. Our
separation works “the other way around”, that is we obtain a probability measure u which is not
absolutely continuous w.r.t. the Lebesgue measure. This shows that the Lebesgue measure has
no extremal position for relative absolutely continuity inside the class of measures having the
same Kurtz randoms. For comparison, a measure satisfies Steinhaus theorem iff it is absolutely
continuous w.r.t. Lebesgue measure [16].

Theorem 54. There is an increasing surjective computable function f : [0, 1] — [0, 1] which is
not absolutely continuous, yet for any I1{ set A with A\(4) = 0, it holds that A(f(A)) = 0.

Corollary 55. There is a non-atomic probability measure g such that p-Kurtz random and
Kurtz random coincide, yet pu < .

Proof. Let fi be the probability measure whose cumulative distribution function is f, equivalently
a(B) == A(f(B)). Since f does not have Luzin’s (N), there is some set B with A(B) = 0 and
fi(B) > 0. Let st = 31+ 3. Then using the same B, we see that g & A. On the other hand, if
Ais a TIY set, then A\(A) = 0 implies ji(A) = 0, and thus A\(A4) = 0 if and only if u(A) =0. O

Corollary 56. For increasing computable functions f : [0, 1] — [0, 1], reflecting Kurtz random-
ness does not imply Luzin’s (N).
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We prepare our construction. Suppose h : [0,1] — [0,1] is a piecewise linear increasing
function, B C [0, 1] is a finite union of intervals with rational endpoints, and § > 0. We define
a new function

Concentrate(h, B, d) : [0,1] — [0, 1]

which concentrates A(B)-much measure onto a set of Lebesgue measure at most d, as follows.

Definition 57 (Definition of Concentrate). Given h, B, d as above, write B = Uy, [, where I},
are almost disjoint intervals and h [ h~1(I};) is linear (contained in a single piece of the piecewise
function). Modify h on each interval h=!(I}) by substituting a piecewise linear function which
alternates between a slope of 0 and a large positive slope. The modification is chosen in a canon-
ical computable way to obtain the following outcomes. Below, h denotes Concentrate(h, B, ).

1. h = h outside of h~1(B).

2. Letting F' denote the union of the pieces of ffl(B) which have positive slope, we have
AF) < d and f(F)= B, and

3. For all z, |h(z) — h(z)| < 6.

Lemma 58. Suppose that (Bj,)nen is a computable sequence of finite unions of intervals in
[0,1]. Define a sequence of functions (fy),en inductively by setting fo(x) = = and

fnt1 = Concentrate(fy,, Bn,2™").

Then (fy,)nen converges uniformly to a computable increasing function f. Furthermore, if there
is some € > 0 such that A\(B;,) > ¢ for all n, then f fails Lusin’s (N).

Proof. The uniform convergence to a computable f follows from the third property in the defi-
nition of Concentrate, and f is increasing because each f, is. Observe that Concentrate never
changes the value of h at a break point of h. Therefore, the second property in the definition of
Concentrate, which tells us that f,,(F') = B for some F with A(F') < 27", implies that f(F) = B
as well (here we also used the fact that f is continuous and increasing). It follows that f is not
absolutely continuous, and thus fails Lusin’s (N). O

Proof of Theorem[5]]. We construct a computable sequence (By,)nen such that A(B,,) > 1/2 for
all n, and argue that the function f constructed as in Lemma [58| satisfies A(f(P)) = 0 whenever
P eTIY and A\(P) = 0.

The strategy for a single I1{ class P, is as follows. Let Ceo be some interval of length e..
Let By = [0,1] \ Ces. As long as fs(Pes) N Ce s has measure at least ¢./2, define C¢ 511 = Ce 5.
If f(P.s) N Ces has measure less than e./2, define Ce o1 = (fs(Pe,s) N Ce,s) U C, where C is a
new interval or finite union of intervals almost disjoint from U;<sCe . Choose C' so that that
Ce,s+1 has measure e, if possible; if this is not possible, choose C' so that Ui<s41Ce = [0, 1].
In the latter case the measure of C¢ s+1 may be less than e, and this is also fine. If we reach
this degenerate situation, we also stop checking the measures and simply let C,; = C, 441 for
all t > s.

We claim that if A(P.) = 0, then A(f(F.)) = 0. Suppose at some stage s we have that the
measure of fg(P.s) N Ces is greater than e./2. If this continues for all ¢ > s, then f and f;
coincide on the set J := f~1(C.s). It follows that f is piecewise linear on J, but f(P. N J)
has positive measure; this is impossible since P, has measure 0. We conclude that nothing lasts
forever; eventually we do reach a stage s where Ui<sCe s = [0, 1]. Since C, s never changes again,
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f and fs again coincide on J := f_l(C'&S). Observe also that P, C J. Since fs is piecewise
linear and A(P.) = 0, we also have A(fs(P.)) = 0, and thus A(f(P.)) = 0.

The above strategy works purely with negative requirements, specifically freezing f on
fYCes). If other requirements also freeze f on other places, it has no effect on the proof
above. The only thing to consider when combining requirements is that we need to make sure
A(Bs) > 1/2 for all s, where we now define

B, =10,1]\ | Ce.s.
e<s
Since we always have A\(Ce ) < €., we can keep the sets B large by choosing the values of €. to
satisfy > e < 1/2. O

7 Il}-hardness of randomness reflection

If we do not restrict the domain of the functions to (locally) compact spaces, then essentially
any form of randomness reflection is IIi-hard. We show a construction which yields a function
having either null range, or is surjective when restricted to a specific null subset of its domain.
In particular, our construction is independent of the randomness notions involved.

Theorem 59. Let K,L C [0, 1]2 be non-empty sets containing only Kurtz randoms. Then
“whenever f(z) € K, then already # € L” is a IIi-hard property of continuous functions

[ ([0’ 1] \ Q) x [0> 1] - [0’ 1]2'

Proof. Tt is well-known that [0,1] \ Q and N are homeomorphic, and even computably so. We
identify the spaces in such a way that the Lebesgue measure induced on NV satisfies A\({p € NV |
Vn pan = pan+t1}) = 0.

We construct a function fr : NNx[0,1] — [0, 1]? from a countably-branching tree T First, we
modify 7" to obtain T = {wowowiwy . .. Wp_1Wh_1wy, | W € THU{wowowiwy . . . Wy—1Wp—1WHWy, |
w € T}. Clearly, T is well-founded iff 7' is, and [T] contains no Kurz-randomns (so in
particular,[T] x [0,1] N L = ). For any p € NN, let |T,p| = n iff n is minimal such that
P & T, and |T,p| = oo if p € [T].

Let s : [0,1] — [0, 1]2 be a computable space-filling curve, and let (s,,),en be a computable
fast Cauchy sequence converging to s, such that any s, ([0, 1]) is a finite union of line segments.
We then define fr(p,z) = si7p(z). This construction is computable in 7. We claim that fr
has our reflection property iff 7" is well-founded.

If T is well-founded, then the range of fr is |J, oy 5n([0,1]). Since any s,([0,1]) is a null
I1-set, we see that fr never takes any Kurtz random values (in particular, none in K), and
thus vacuously, if f(z) € K then x € L. The argument in fact establishes that for arbitrary T,
whenever p ¢ T' then fr(p,z) is not Kurtz random regardless of .

Now assume that 7 is ill-founded and that y € K. We find that f'({y}) = (7] x sz ({y}).
Since 7 is illfounded and so is space-filling, this set is non-empty. But by construction of T, it
cannot contain any elements of L. Hence, fr does not have our reflection property. O

8 A glimpse at related notions

As a slight digression, we have a look at related properties of functions, namely those where
the image of null sets are required to belong to some other ideals of small sets, such as being
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countable or being meager. These properties were investigated by Sierpinski [25] and Erdds [7],
amongst others. Our results are formulated in some generality, but as a consequence, we do see
that we do not get any “regular” functions with these properties. In contrast, Erdos showed that
under CH there is a bijection f : R — R mapping meager sets to null sets with f~! mapping
null sets to meager sets.

Theorem 60. (1) If A is a nonnull X} set and f is a continuous function mapping any null
subset of A to a countable set, then the range of f restricted to A is countable. In
particular, if A is an interval, then range of f restricted to A is a constant function.

(2) Assume CH, there is a function f mapping any null set to a countable set such that the
range of f is R, and f(A) is uncountable for any nonnull set A but for every y, f~'(y) is
an uncountable Borel null set.

(3) If A is a nonnull set and f is a continuous function mapping any null subset of A to a
meager set, then the range of f restricted to A is meager. In particular, if A is an interval,
then range of f restricted to A is a constant function.

(4) If f is a measurable function and maps a null set to a meager set, then the range of f is
meager. In particular, if f is continuous with the property, then f is constant.

(5) If f has the Baire property and maps a meager set to a null set, then the range of f is
null. In particular, if f is continuous with the property, then f is constant.

Proof. (1). Fix a real = so that f is computable in 2 and A is ¥{(x). Now for any real z € A4,
let g be a A}(O*@?)-generic real. Then z cannot be Martin-Léf random relative to g and so
there there must be a Al(g)-null set G so that z € G N A. By the assumption, f(G N A) is a
Yi(z @ g)-countable set and so every real in f(G' N A) is hyperarithmetically below = @ g. In
particular, f(z) <, x @ g. Since f is computable in x, we also have that f(z) <j = @ z. Then
f(2) < @ since g is A}(O*P?)-generic real. By the arbitrarility of z, the range of f restricted
to A is countable. So if A is an interval, then range of f restricted to A is a constant function.

(2). Fix an enumeration of nonempty Gs-null sets {Gq }a<x, and all the reals {yq }a<n,. We
define f and {fa}a<x, by induction on a.

At stage 0, define f(z) = yo for any x € Gy. Define 5y = 0.
At stage o < Ry, let B, be the least ordinal v so that Gy \U,/ <, (U, <5 , Gy) is uncountable.

Define f(z) = yq for any 2 € Gy \ Uy <a(Uy<5,, Gv)-

Clearly the range of f is R. Moreover, for any o < Xy, f71(ys) = G, \ Ua’<a(U'y’§,Ba/ Gy)
is an uncountable Borel null set. Now for any null set A, there must be some o < ¥; so that
A C G,. By the construction, f(A) C f(Ga) C{yg | B < a} is a countable set.

(3). Fix a real = so that f is computable in z restricted to A. Fix a 2-z-random real r € A.
Then f(r) <r x @ r. But f(r) cannot be 2-z-generic (see [18]). So the range f restricted to
AN{r|risa2—z-random} is meager. But A\ {r | r is a 2 — z-random} is a null set. So, by
the assumption on f, the range of f restricted to A is meager.

(4). Suppose that f is measurable function and maps a null set to a meager set. Without
loss of generality, we may assume that the domain of f is [0, 1]. Then there is a sequence closed
sets {Fy }new so that [0, 1]\ U, e, Fr is null and f restricted to [, is continuous for every n. By
(3), the range of f restricted to F), is a meager set. So the range of f restricted to |, ., F is

new
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also a meager set. Note that [0, 1]\ U, ., I is null. So the range of f is meager. In particular,
if f is continuous with the property, then f is constant.
(5). This is dual to (4). O

9 QOutlook

The most prominent avenue of future research seems to be the resolution of Question asking
for a separation (or equivalence proof) of Al-randomness reflection and Al(O)-randomness
reflection. There are a few further aspects that merit further investigation, though.

Topological properties While we have not been systematic in exploring the impact of topo-
logical properties of the domain (and maybe codomain) of the functions we explore, we observe
that our proofs differ in the requirements they put on the spaces involved. For example, the
majority of the arguments presented in Sections and are relying just on the theory of
randomness, and are thus applicable to any space where randomness works as usual (see [10]). In
Section (local) compactness of the domain is a core ingredient in our arguments. In Section
we do use particular properties of the reals, in particular connectedness. Further investigation
of how topological properties of spaces relate to how randomness reflection behaves for functions
on them seems warranted.

Formalizing randomness reflection With the exception of Theorem we have only con-
sidered symmetric notions of randomness reflection: Whenever f(x) is random in some sense, we
demand that z is random in the very same sense. While this seems natural, a downside is that
we do not get trivial implications between different notions of II9-type randomness reflection.
We could consider the full square of reflection notions, (K, L)-randomness reflection being that
whenever f(z) is K-random, then z is L-random for randomness notions K,L. An extremal
version also makes sense, where we just ask for when the image of all non-randoms under f
has positive measure. Whenever the latter property holds for some randomness notion L, then
f cannot have (K, L)-randomness reflection for any randomness notion K at all. We typically
prove non-randomness reflection in this manner.

It seems too early to pass judgement on what precise formulations of randomness reflection
will ultimately be the most fruitful.

Functions beyond measurability So far, the most general class of functions we considered
for Luzin’s (N) were the measurable functions. If we consider unrestricted functions in full
generality, it is unsurprising that we quickly move beyond the confines of ZFC. For example, we
are wondering whether Corollary |17 holds for all functions having Luzin’s (N)7 An investigation
into such questions is on its way by Yinhe Peng and the third author.
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