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Outline

The Besicovitch pseudo-distance between two sequences X,Y ∈ 2ω is the upper
density of their symmetric difference.

d(X,Y ) = lim sup
n→∞

|X �n ∆Y �n |
n

A sequence X ∈ 2ω is

(Martin-Löf) random if K(X �n) ≥ n−O(1)

of (effective) dimension at least s if K(�n) ≥ sn− o(n)

weakly s-random if K(X �n) ≥ sn−O(1)

In this talk we discuss how far (and near) the following kinds of sequences can
and must be from each other.

Dimension 1 sequences and randoms

Dimension s sequences and randoms

Dimension s sequences and weakly s-randoms
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Dimension 1 sequences and randoms

If d(X,Y ) = 0, then X and Y are said to be coarsely similar.

Theorem 1
A sequence X has dimension 1 if and only if it is coarsely similar to a random.

Proof of (⇐) direction:
Suppose Y is random and d(X,Y ) = 0. Then for each ε > 0, for sufficiently
large n we can code Y � n by providing X � n and a list of the locations of at
most εn bits to be flipped. Therefore,

K(Y �n) ≤ K(X � n) +O(εn log n).

Since this holds for arbitrary ε, X has dimension 1.
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Harper’s Theorem

For σ, τ ∈ 2n, let

d(σ, τ) =
|σ∆τ |
n

For A,B ⊆ 2n, let

d(A,B) = min(d(σ, τ) : σ ∈ A, τ ∈ B).

The Hamming ball of radius r centered at σ is

Br(σ) := {τ : d(σ, τ) ≤ r}.

A Hamming sphere centered at σ is a set S such that for some r,

Br(σ) ⊆ S ⊆ Br+1/n(σ).

Harper’s Theorem

For any A,B ⊆ 2n, there are Hamming spheres A′ and B′, centered at 0n and
1n respectively, such that |A| = |A′|, |B| = |B′|, and d(A′, B′) ≥ d(A,B).
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Entropy and density

The Shannon entropy function is

H(p) = p log p+ (1− p) log(1− p)

where 0 log 0 = 0 by convention.

This function relates the size of a Hamming ball to its radius.

For any σ ∈ 2n,

H(p)n− o(n) ≤ log |Bp(σ)| ≤ H(p)n.

If X has asymptotic density p, then its dimension is at most H(p).

The Bernoulli p-random sequences have dimension exactly H(p).
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A finite application

Theorem (essentially Buhrman, Fortnow, Newman& Vereshchagin)

For every ε > 0 there is a q < 1 such that for sufficiently large n, if τ ∈ 2n with
K(τ) > qn, then there is σ ∈ Bε(τ) with K(σ) > n.

Proof. Given ε, let q be larger than H(1/2− ε).
Let A be the set of random strings (K(σ) ≥ n).

Let B be {ρ : d(ρ,A) > ε}, so d(A,B) > ε.

Harper’s Theorem provides A′, B′, Hamming spheres.

B1/2(0n) ⊆ A′, because A contains at least half the strings.

So B′ ⊆ B1/2−ε(1
n).

So log |B| ≤ log |B1/2−ε(1
n)| ≤ H(1/2− ε)n < qn.

And B is c.e. So for sufficiently large n, if ρ ∈ B, K(ρ) < qn.

Given τ with K(τ) ≥ qn, τ 6∈ B, so d(τ,A) ≤ ε.
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Theorem 1 proof sketch

A finite extension construction that fails:

Given X of dimension 1, we want a random Y with d(X,Y ) = 0. Let P be a
Π0

1 class of randoms.

Build τ0τ1τ2 · · · ≺ Y .

(Corresponding to σ0σ1σ2 · · · ≺ . . . X.)

Maintain τ0 . . . τn extendible in P while waiting for the dimension of X to
rise for good above some q = H(1/2− ε).
Since (roughly) K(σn+1|σ0 . . . σn) ≥ q|σn+1|, adapt the finite case to find
a random extension τn+1 which is ε-close to σn+1.

Problem: τ0 . . . τn has more information than σ0 . . . σn. The opponent can
copy the extra information to σn+1. So K(σn+1|τ0 . . . τn) < q|σn+1|.

Solution: At each stage, consider not only one τ0 . . . τn, but all τ0 . . . τn which
are in P and close to σ0 . . . σn, and extend one which the opponent did not
copy information from. Then apply compactness.
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Dimension s sequences to randoms

Theorem 2
For every sequence X of dimension s, there is a random Y such that
d(X,Y ) ≤ 1

2 −H
−1(s).

Here H−1 picks out the smaller of two possible values.

The result is optimal. If X is a Bernoulli p-random sequence, its
dimension is s = H(p), and its distance to a random is at least 1/2− p.
To prove it, modify the previous construction.

If sn = K(σn+1|σ0 . . . σn), choose τ0 . . . τn+1 in the tree of randoms to
satisfy d(τi, σi) ≤ 1

2 −H
−1(si).

Apply concavity of 1
2 −H

−1(si).
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Randoms to dimension s sequences

Proposition 3

If d(X,Y ) ≤ d, then dim(Y ) ≤ dim(X) +H(d).

Proof. To give a code for Y �n, provide X �n and a description of the dn
changes.

K(Y �n) ≤ K(X �n) + log |Bd(0n)|+O(1).

Recall that log |Bd(0n)| ≤ H(d)n.

Corollary: If Y is random and dim(X) = s, then d(X,Y ) ≥ H−1(1− s).

Theorem 3
If Y is random, then there is a sequence X of dimension s with
d(X,Y ) = H−1(1− s).

Follows from finite version.
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Dimension s sequences and weakly s-randoms

Theorem 4
A sequence X has dimension s if and only if it is coarsely similar to a weakly
s-random.

Finite version (via Harper’s Theorem): For all s < 1 and ε, there is a δ such
that for all sufficiently large n and all σ ∈ 2n with K(σ) = sn, there is
τ ∈ Bε(σ) with K(τ) ≥ (s+ δ)n.

Proof idea: Using density ε of changes, start building Y as if it were a
dimension (s+ δ) sequence, so that a buffer of extra information is built up:
K(Y �n) > (s+ δ)n. Use compactness to keep the opponent from eating into
the buffer. When the buffer is large enough, safely decrease ε.
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Dimension s sequences and dimension t sequences

Distance from an arbitrary A to the nearest B, where 1 > t > s.

dim(B) = 1 dim(B) = t dim(B) = s
dim(A) = 1 0 H−1(1− t) H−1(1− s)
dim(A) = t 1

2 −H
−1(t) 0 strictly

> H−1(t− s)
dim(A) = s 1

2 −H
−1(s) at least 0

H−1(t)−H−1(s)

Question

For every s < t < 1 and every X of dimension s, is there a Y of dimension t
within distance H−1(t)−H−1(s) of X?
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