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The Besicovitch pseudo-distance between two sequences X,Y € 2% is the upper
density of their symmetric difference.

X1, AY I,
d(X,Y) = limsup X Tn AY o |

n—00 n

A sequence X € 2¢ is
o (Martin-Lof) random if K(X [,) >n—0(1)
o of (effective) dimension at least s if K([,) > sn —o(n)
o weakly s-random if K(X [,) > sn— O(1)

In this talk we discuss how far (and near) the following kinds of sequences can
and must be from each other.

@ Dimension 1 sequences and randoms
@ Dimension s sequences and randoms

e Dimension s sequences and weakly s-randoms
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Dimension 1 sequences and randoms

If d(X,Y) =0, then X and Y are said to be coarsely similar.

A sequence X has dimension 1 if and only if it is coarsely similar to a random. l

Proof of («) direction:

Suppose Y is random and d(X,Y) = 0. Then for each ¢ > 0, for sufficiently
large n we can code Y [ n by providing X | n and a list of the locations of at
most en bits to be flipped. Therefore,

K(Y ) < K(X [ n)+ O(enlogn).

Since this holds for arbitrary €, X has dimension 1.
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Harper’s Theorem

For o,7 € 2", let
_ |oAT]

d(o,7) =

For A, B C 2", let
d(A,B) = min(d(o,7) : 0 € A, 7 € B).
The Hamming ball of radius r centered at o is
B.(0) := {71 :d(o,7) <r}.
A Hamming sphere centered at o is a set .S such that for some r,

B, (0) €S C Bry1/n(0).

For any A, B C 2™, there are Hamming spheres A’ and B’, centered at 0™ and
1™ respectively, such that |A| = |4'|, |B| = |B’|, and d(4’, B") > d(A4, B).
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Entropy and density

The Shannon entropy function is

H(p) =plogp+ (1 —p)log(1 — p)

where 0log 0 = 0 by convention.

This function relates the size of a Hamming ball to its radius.

e For any o € 2",
H(p)n — o(n) <log|By(c)| < H(p)n.

e If X has asymptotic density p, then its dimension is at most H(p).

@ The Bernoulli p-random sequences have dimension exactly H(p).
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A finite application

Theorem (essentially Buhrman, Fortnow, Newman& Vereshchagin)

For every e > 0 there is a ¢ < 1 such that for sufficiently large n, if 7 € 2™ with
K(7) > gn, then there is 0 € B.(7) with K (o) > n.

Proof. Given €, let ¢ be larger than H(1/2 —¢).

Let A be the set of random strings (K (o) > n).

Let B be {p:d(p,A) > €}, s0 d(A, B) > e.

Harper’s Theorem provides A’, B’, Hamming spheres.

By /5(0™) € A’, because A contains at least half the strings.
So B" C Byjp_.(1").

So log|B| <log|B;/o—(1")| < H(1/2 — g)n < gn.

And B is c.e. So for sufficiently large n, if p € B, K(p) < ¢n.
Given 7 with K(7) > gn, 7 € B, so d(1,A) < e.

Linda Brown Westrick University of ConDimension 1 seq



Theorem 1 proof sk

A finite extension construction that fails:

Given X of dimension 1, we want a random Y with d(X,Y) = 0. Let P be a
119 class of randoms.

e Build gy --- < Y.

(Corresponding to ogo103 -+ < ... X.)

Maintain 7y ... 7, extendible in P while waiting for the dimension of X to
rise for good above some ¢ = H(1/2 — ¢).

Since (roughly) K(op41|00-..0n) > glont1|, adapt the finite case to find
a random extension 7,41 which is e-close to g,,41.

Problem: 7 ...7, has more information than og...o,. The opponent can
copy the extra information to op41. So K(opt1|70 ... Tn) < qlont1|-

Solution: At each stage, consider not only one 7y ... 7,, but all 7y...7, which
are in P and close to og...0,, and extend one which the opponent did not
copy information from. Then apply compactness.
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Dimension s sequences to randoms

For every sequence X of dimension s, there is a random Y such that
d(X,Y) < % — H71(s).

o Here H! picks out the smaller of two possible values.

@ The result is optimal. If X is a Bernoulli p-random sequence, its
dimension is s = H(p), and its distance to a random is at least 1/2 — p.

e To prove it, modify the previous construction.

o If s, = K(opy1|00...0n), choose 1y ... 7,41 in the tree of randoms to

satisfy d(r;,0;) < & — H™'(s;).

o Apply concavity of % — H71(s;).
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Randoms to dimension s sequences

If d(X,Y) < d, then dim(Y) < dim(X) + H(d).

Proof. To give a code for Y [,, provide X [, and a description of the dn
changes.

Recall that log |B4(0™)| < H(d)n.

Corollary: If Y is random and dim(X) = s, then d(X,Y) > H~ (1 — s).

If Y is random, then there is a sequence X of dimension s with
d(X,Y)=H1(1-5).

Follows from finite version.
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Dimension s sequences and weakly s-randoms

Theorem 4

A sequence X has dimension s if and only if it is coarsely similar to a weakly
s-random.

Finite version (via Harper’s Theorem): For all s < 1 and ¢, there is a § such
that for all sufficiently large n and all o € 2" with K (o) = sn, there is
T € B.(0) with K(7) > (s + d)n.

Proof idea: Using density ¢ of changes, start building Y as if it were a
dimension (s + &) sequence, so that a buffer of extra information is built up:
K(Y 1) > (s+ d)n. Use compactness to keep the opponent from eating into
the buffer. When the buffer is large enough, safely decrease ¢.
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Dimension s sequences and dimension ¢ sequences

Distance from an arbitrary A to the nearest B, where 1 >t > s.

dim(B) =1 dim(B) =t dlm( )=s
dim(A4) =1 0 H=11-1t) 11 -5s)
dim(A) =t | 3 — H (1) 0 strlctly

> H (t—s)
dim(A)=s | § — H (s) at least 0
H=1(t)— H 1(s)

For every s <t < 1 and every X of dimension s, is there a Y of dimension ¢
within distance H1(t) — H=1(s) of X?
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