

A Lightface Analysis of the Differentiability Rank

Linda Brown Westrick

University of California, Berkeley
Computability Across Mathematics @ AMS St. Louis

October 19, 2013

Differentiability

Let $D = \{f \in C[0, 1] : f \text{ is differentiable}\}$.

$$f \in D \iff \forall x \left(\lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \text{ exists} \right)$$
$$\forall x (\forall \epsilon \exists \delta \forall h (|h| < \delta \rightarrow \dots))$$

D is Π_1^1 .

Mazurkiewicz, 1936

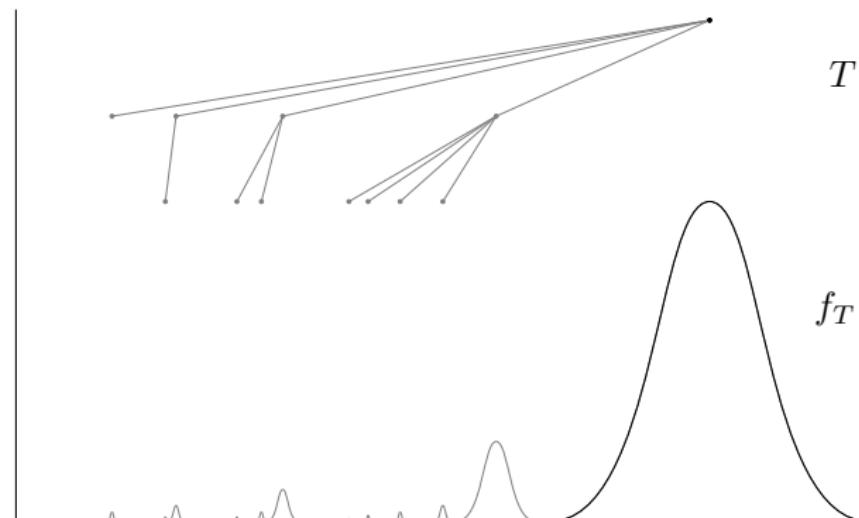
$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

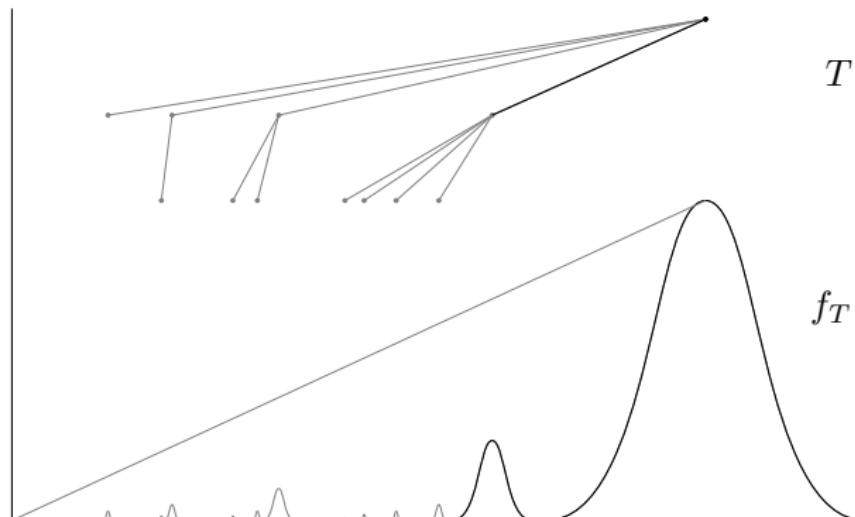


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

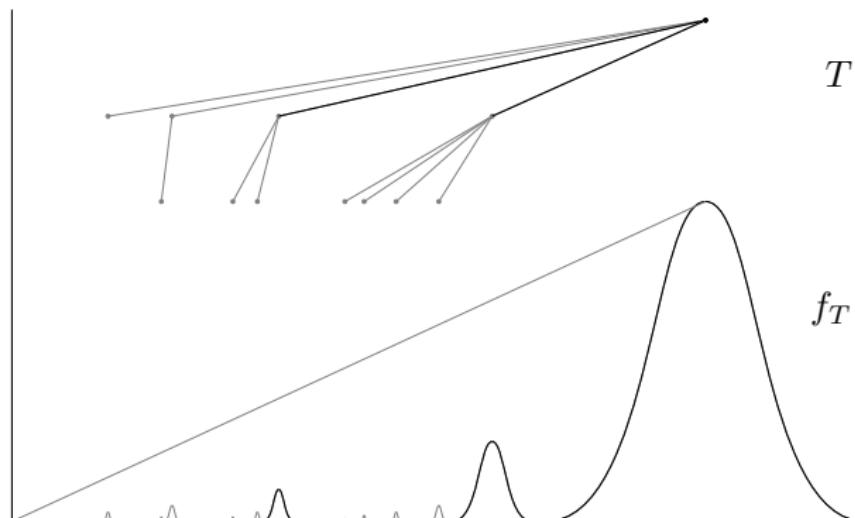


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

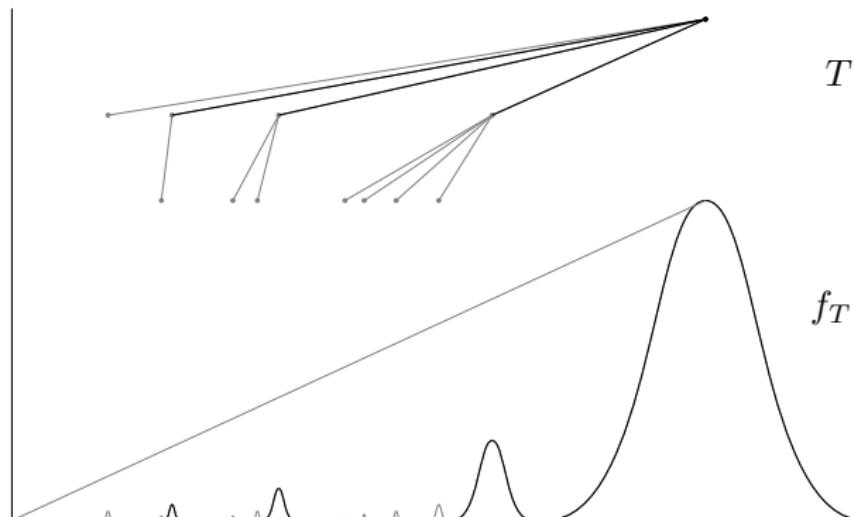


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

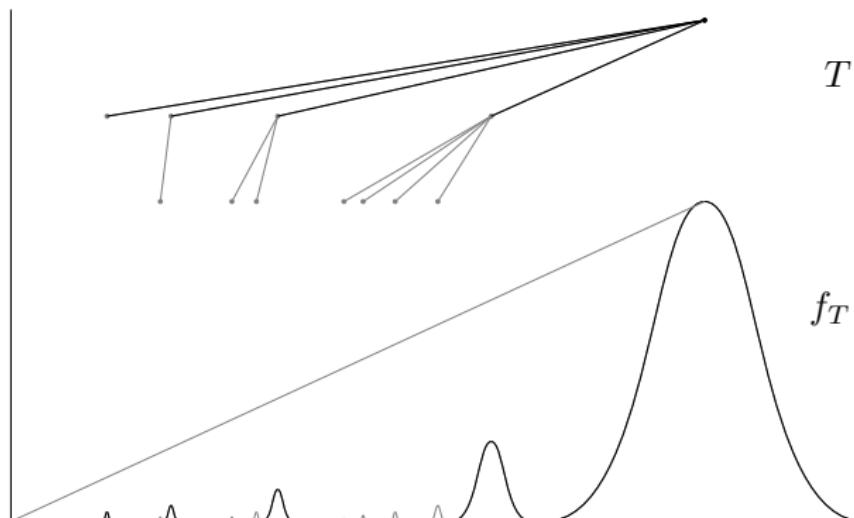


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

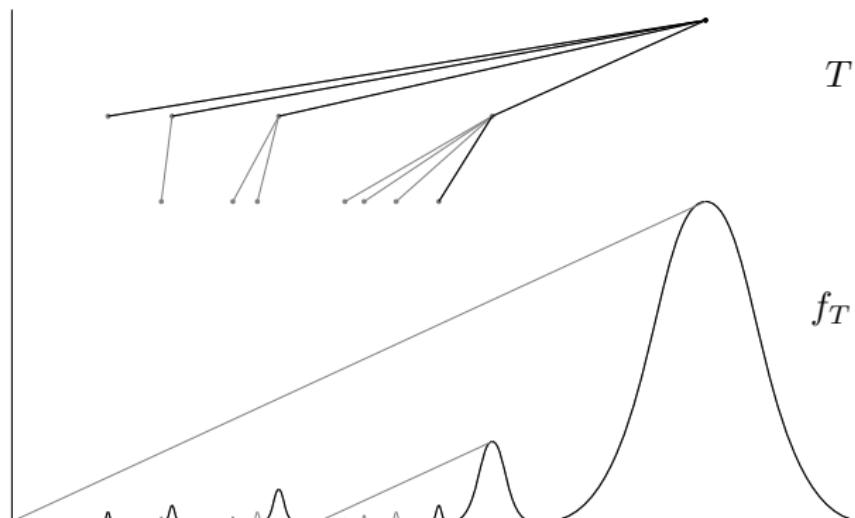


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

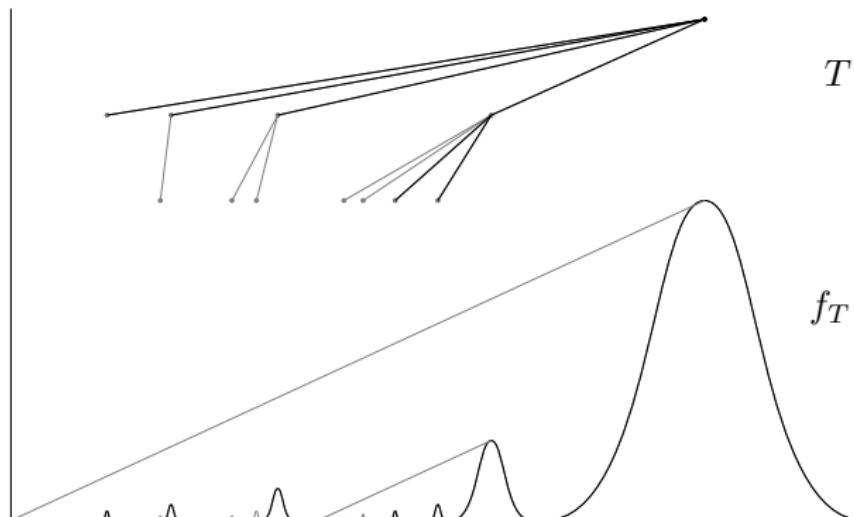


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

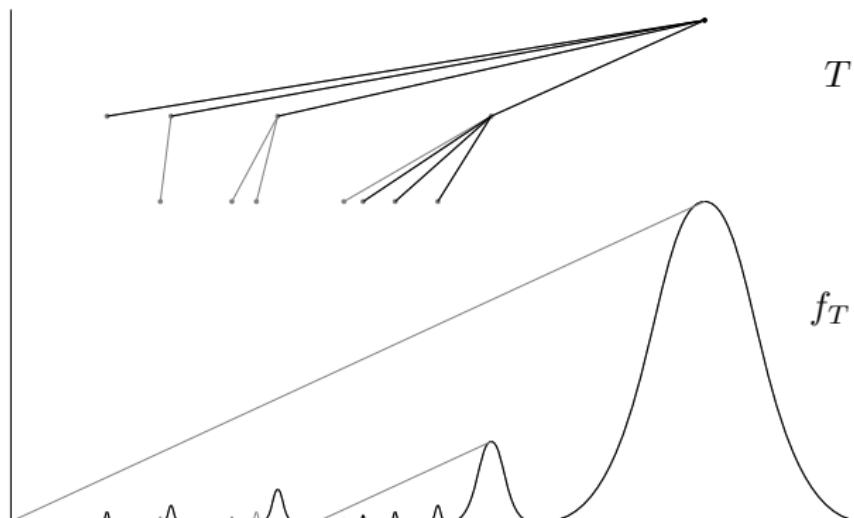


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

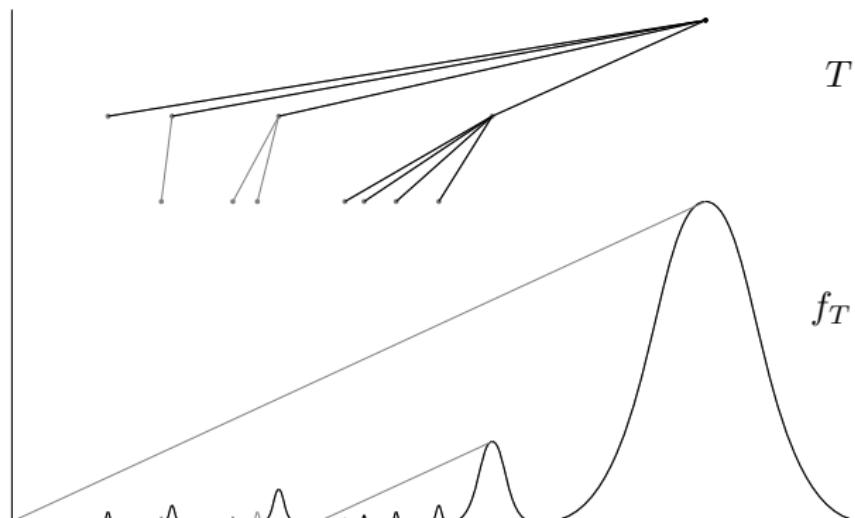


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

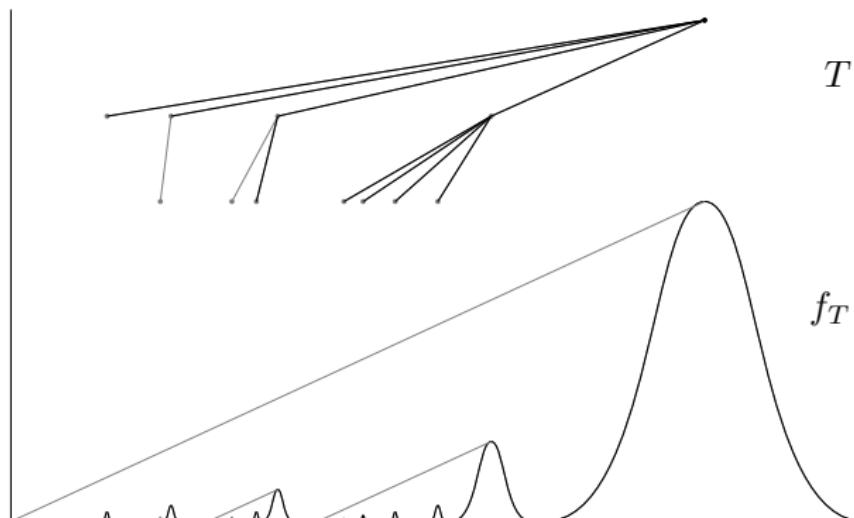


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

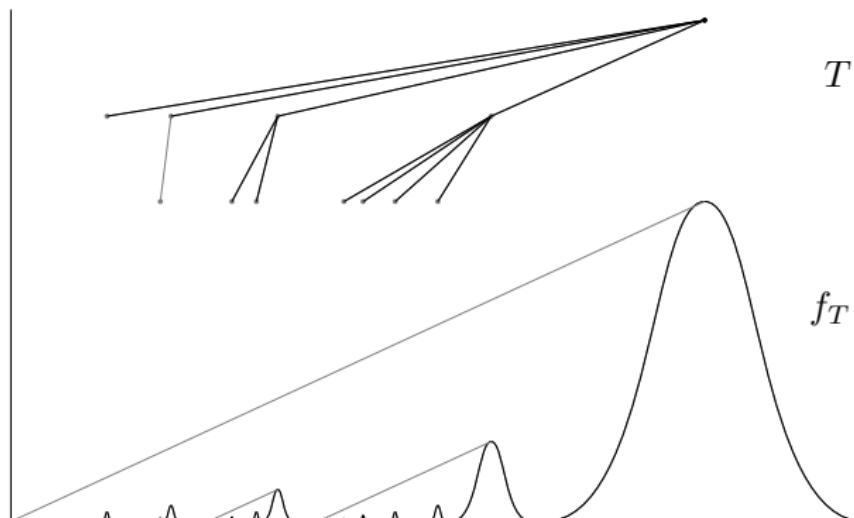


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

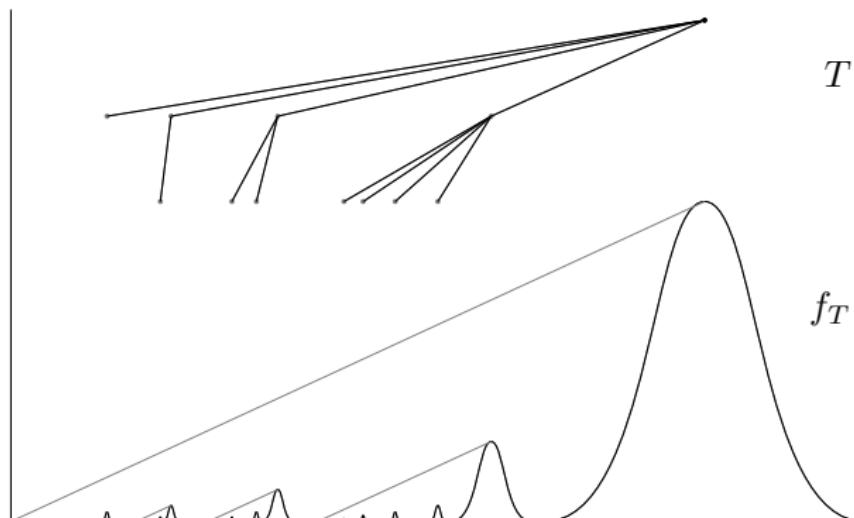


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

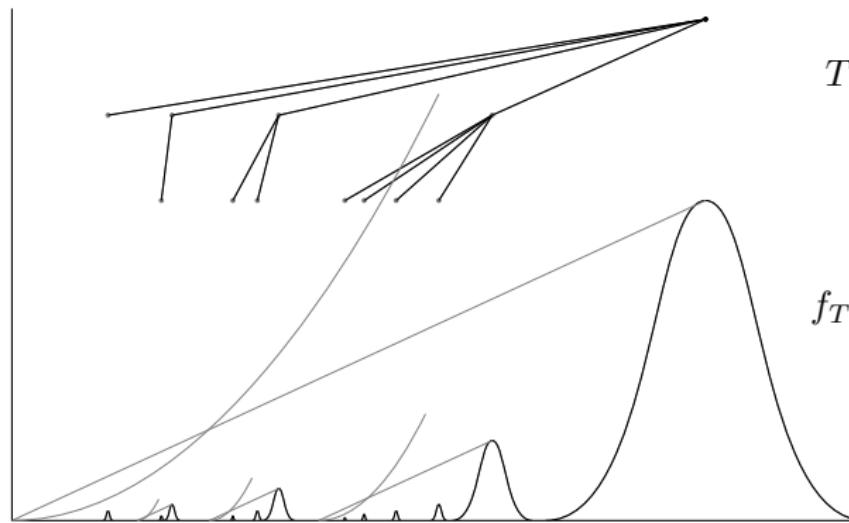


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

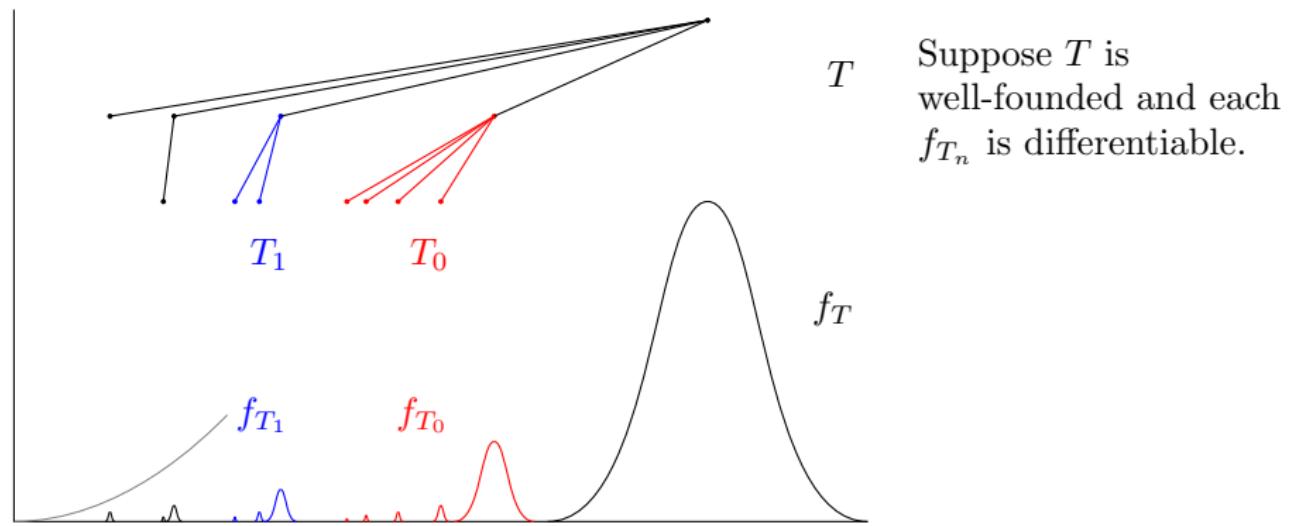


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

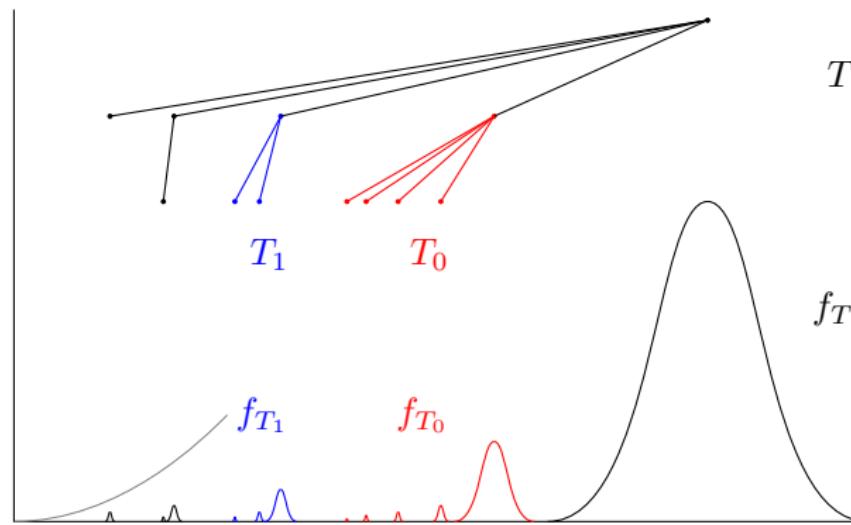


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.



7

Suppose T is well-founded and each f_{T_n} is differentiable.

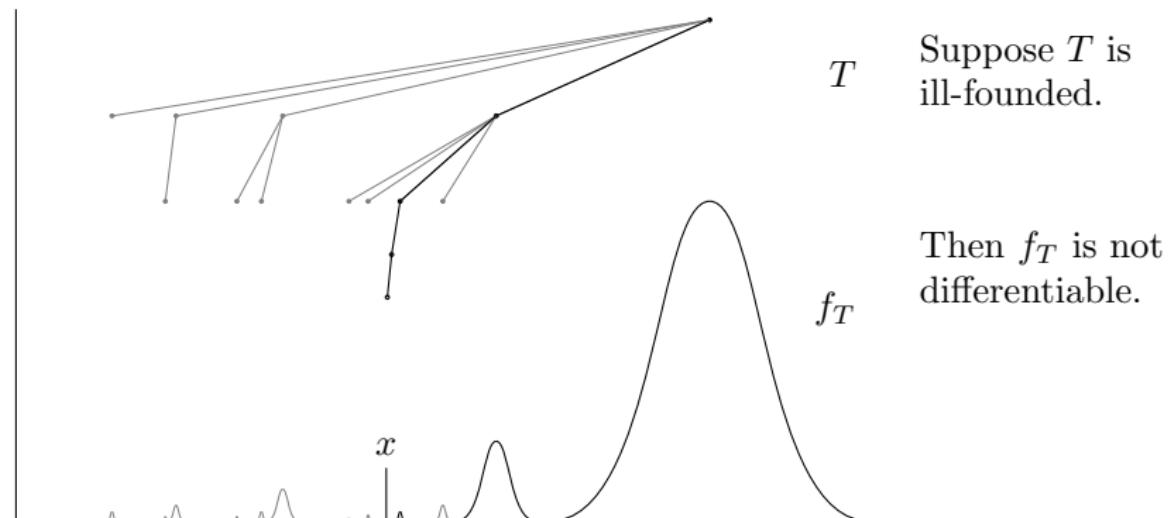
Then f_T is differentiable.

Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

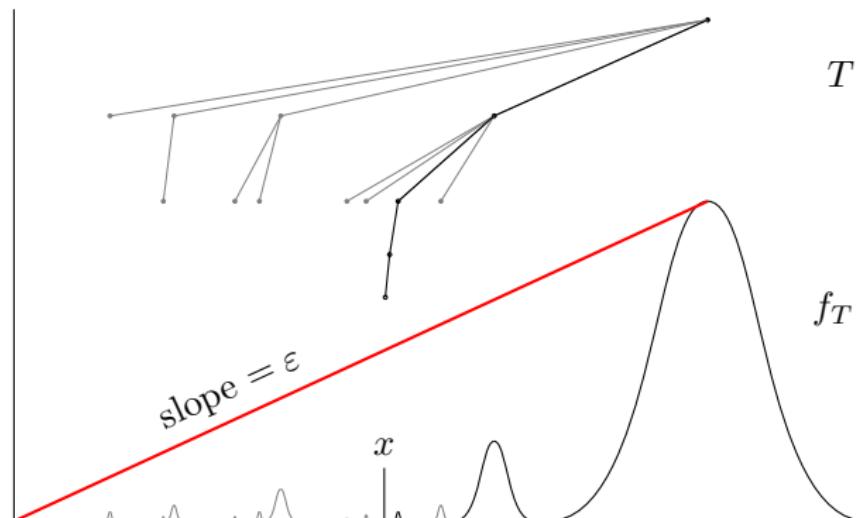


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.



T Suppose T is ill-founded.

Then f_T is not differentiable.

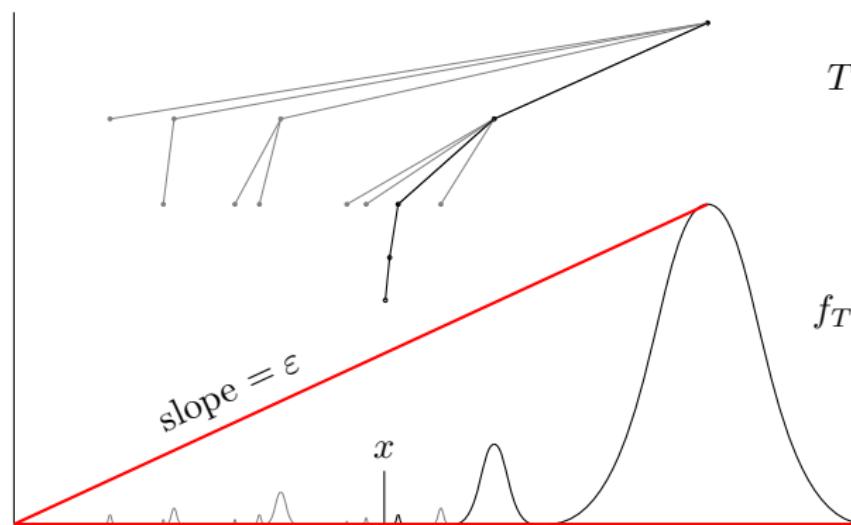
f_T

Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.



T Suppose T is ill-founded.

Then f_T is not differentiable.

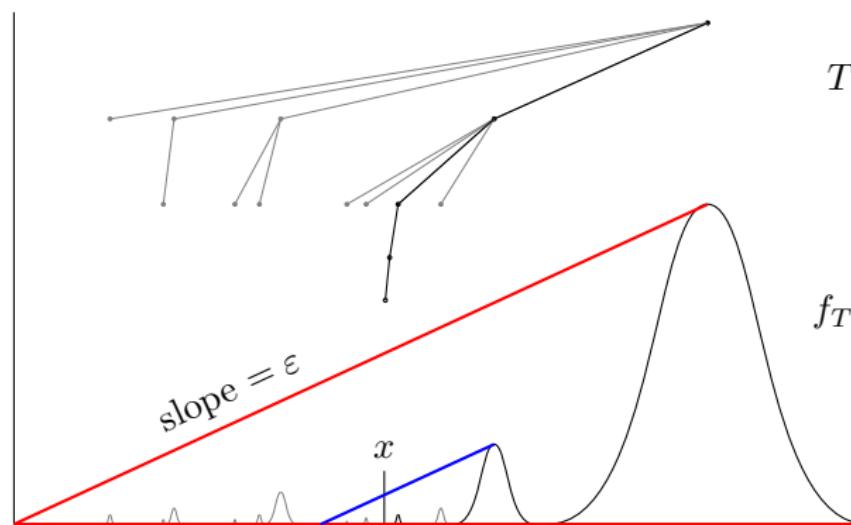
f_T

Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.



T Suppose T is ill-founded.

Then f_T is not differentiable.

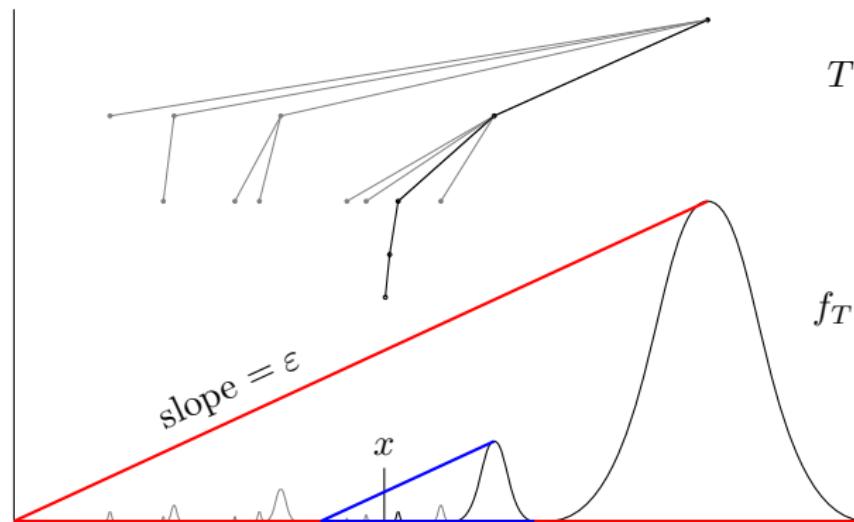
f_T

Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.



T Suppose T is ill-founded.

Then f_T is not differentiable.

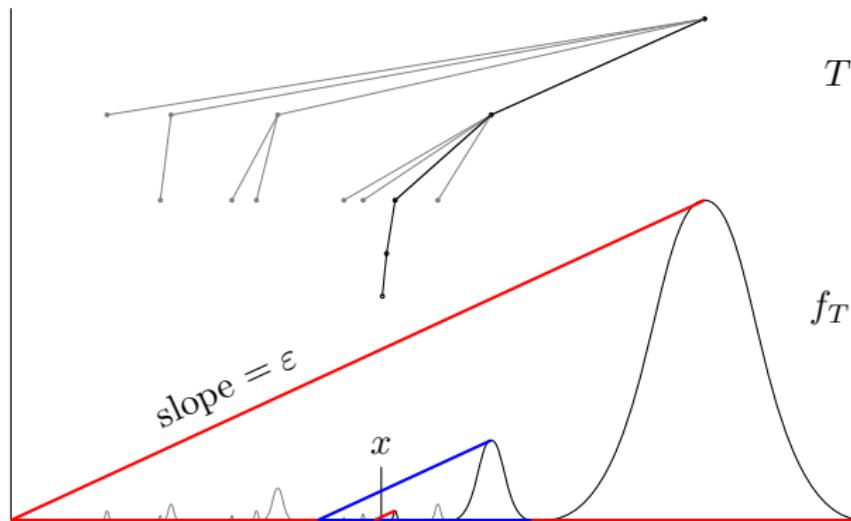
f_T

Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.



T Suppose T is ill-founded.

Then f_T is not differentiable.

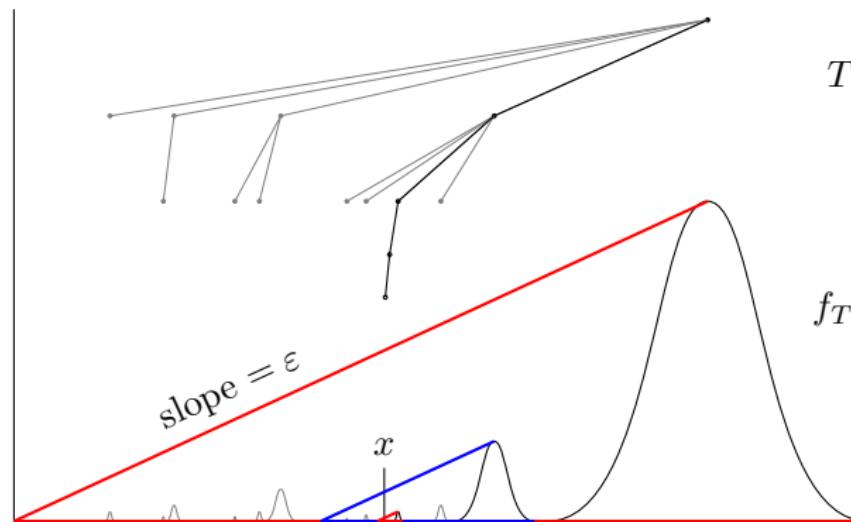
f_T

Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.



T Suppose T is ill-founded.

Then f_T is not differentiable.

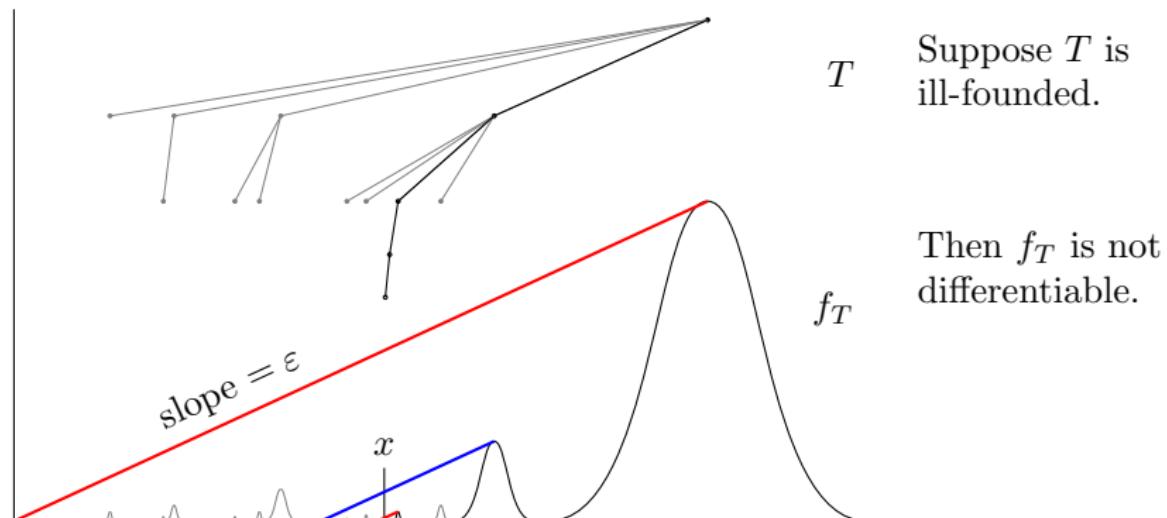
f_T

Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.

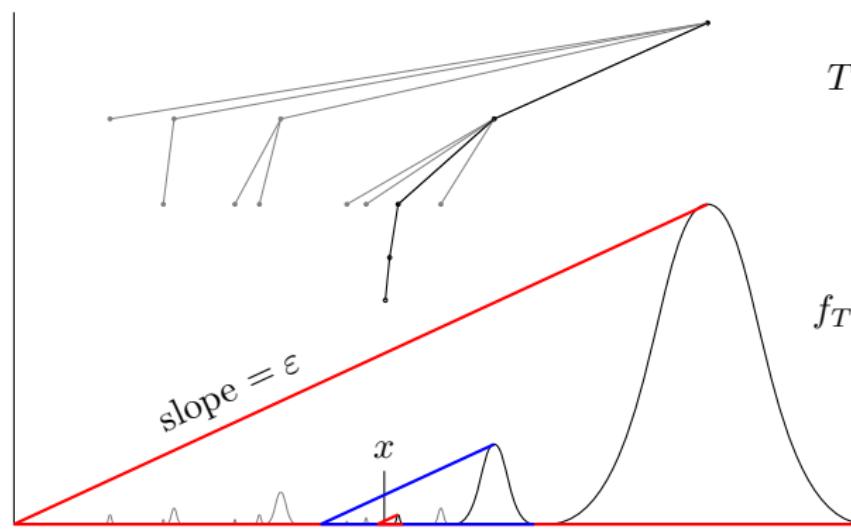


Differentiability

Mazurkiewicz, 1936

$\{f : f \text{ is differentiable}\}$ is Π_1^1 -complete.

Proof: Construct a reduction $(T \in WF, T \notin WF) \rightarrow (f \in D, f \notin D)$.



T

Suppose T is ill-founded.

Then f_T is not differentiable.

In fact, the oscillation of $\frac{f_T(x+h) - f_T(x)}{h}$ is ε .

ε -differentiability

- Let D_ε denote the functions f for which $|D_- f(x) - D^+ f(x)| \leq \varepsilon$.
- We wanted:

$$(WF, \neg WF) \rightarrow (D, \neg D).$$

- We got a stronger result:

$$(WF, \neg WF) \rightarrow (D, \neg D_\varepsilon).$$

- Everything that is hard about D shows up in D_ε .
- Things are nicer in D_ε , so we restrict our attention there.
- Note:

$$D = \bigcap_{\varepsilon > 0} D_\varepsilon.$$

- By definition D_ε is Π_1^1 . The stronger result showed D_ε is Π_1^1 -complete.

A rank on D_ε functions

Given f , Kechris and Woodin defined a transfinite sequence of closed sets which eventually become empty if and only if $f \in D_\varepsilon$.

Definition (Kechris-Woodin 1986)

$$P^0 = [0, 1]$$

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \text{ conditions} \right\}$$

$$P^\lambda = \cap_{\alpha < \lambda} P^\alpha$$

Definition

If $f \in D_\varepsilon$, then $|f|_\varepsilon$ denotes the least α for which $P^\alpha = \emptyset$.

A rank on D_ε functions

Given f , Kechris and Woodin defined a transfinite sequence of closed sets which eventually become empty if and only if $f \in D_\varepsilon$.

Definition (Kechris-Woodin 1986)

$$P^0 = [0, 1]$$

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \text{ For all open intervals } I \ni x, \text{ there are } p, q, r, s \in I \text{ s.t. } \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \right\}$$

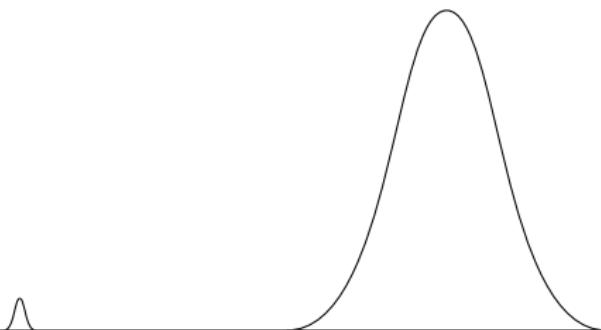
$$P^\lambda = \bigcap_{\alpha < \lambda} P^\alpha$$

Definition

If $f \in D_\varepsilon$, then $|f|_\varepsilon$ denotes the least α for which $P^\alpha = \emptyset$.

A rank on D_ε functions

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \text{ For all open intervals } I \ni x, \text{ there are } p, q, r, s \in I \text{ s.t. } \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \right\}$$



A rank 1 function.

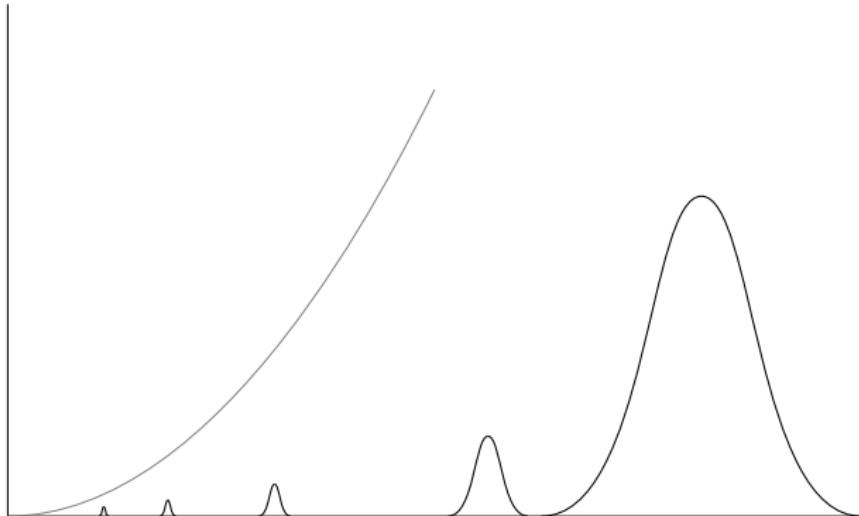
$$P^0 = [0, 1]$$

$$P^1 = \emptyset$$

$$|f|_\varepsilon = 1$$

A rank on D_ε functions

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \right\}$$



A rank 2 function.

$$P^0 = [0, 1]$$

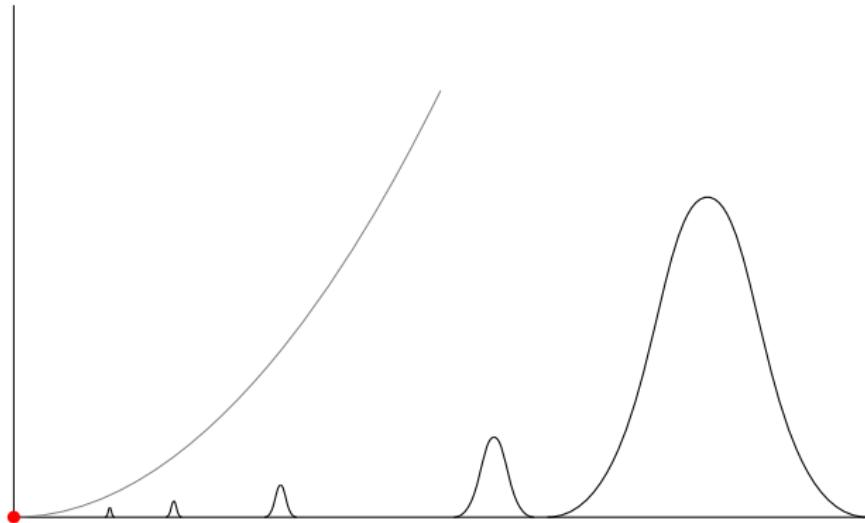
$$P^1 = \{0\}$$

$$P^2 = \emptyset$$

$$|f|_\varepsilon = 2$$

A rank on D_ε functions

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \right\}$$



A rank 2 function.

$$P^0 = [0, 1]$$

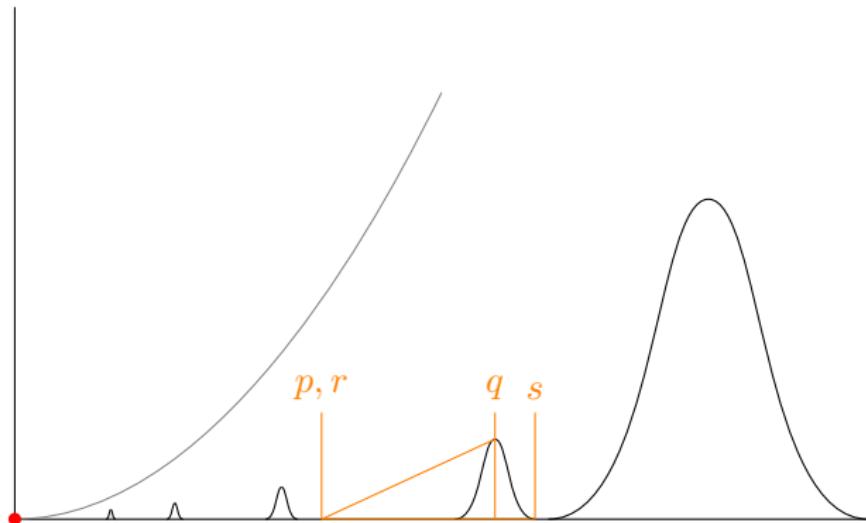
$$P^1 = \{0\}$$

$$P^2 = \emptyset$$

$$|f|_\varepsilon = 2$$

A rank on D_ε functions

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \right\}$$



A rank 2 function.

$$P^0 = [0, 1]$$

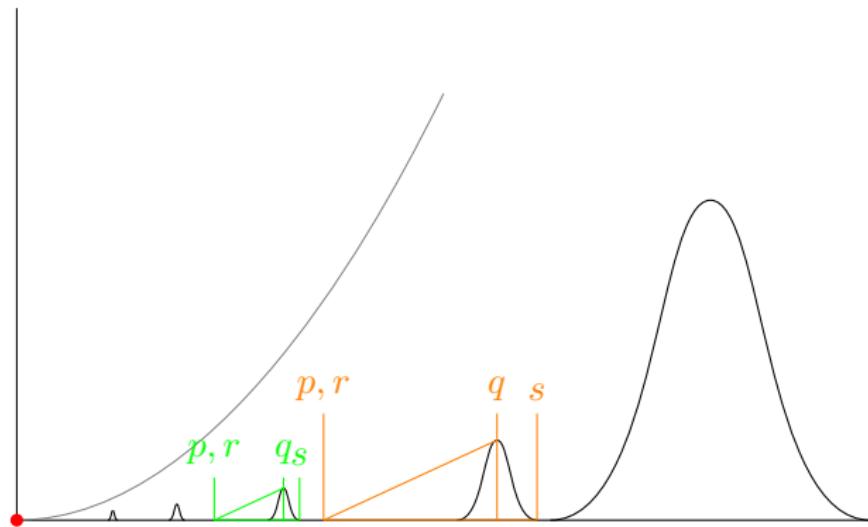
$$P^1 = \{0\}$$

$$P^2 = \emptyset$$

$$|f|_\varepsilon = 2$$

A rank on D_ε functions

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \begin{array}{l} \text{For all open intervals } I \ni x, \text{ there are } p, q, r, s \in I \text{ s.t.} \\ \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \end{array} \right\}$$



A rank 2 function.

$$P^0 = [0, 1]$$

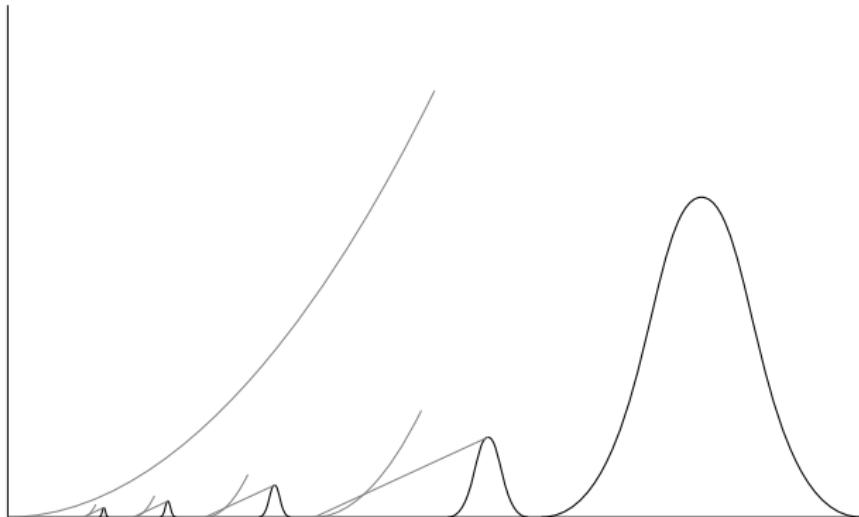
$$P^1 = \{0\}$$

$$P^2 = \emptyset$$

$$|f|_\varepsilon = 2$$

A rank on D_ε functions

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \right\}$$



A rank 3 function.

$$P^0 = [0, 1]$$

$$P^1$$

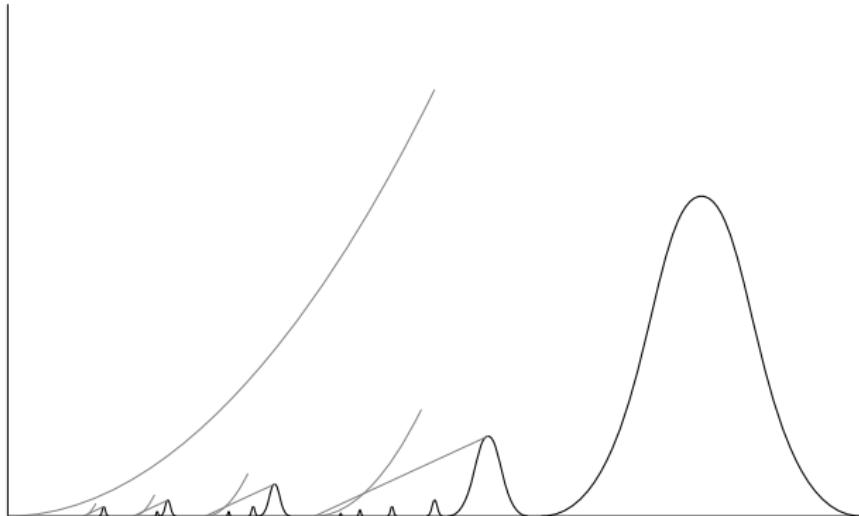
$$P^2 = \{0\}$$

$$P^3 = \emptyset$$

$$|f|_\varepsilon = 3$$

A rank on D_ε functions

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \right\}$$



A rank 3 function.

$$P^0 = [0, 1]$$

$$P^1$$

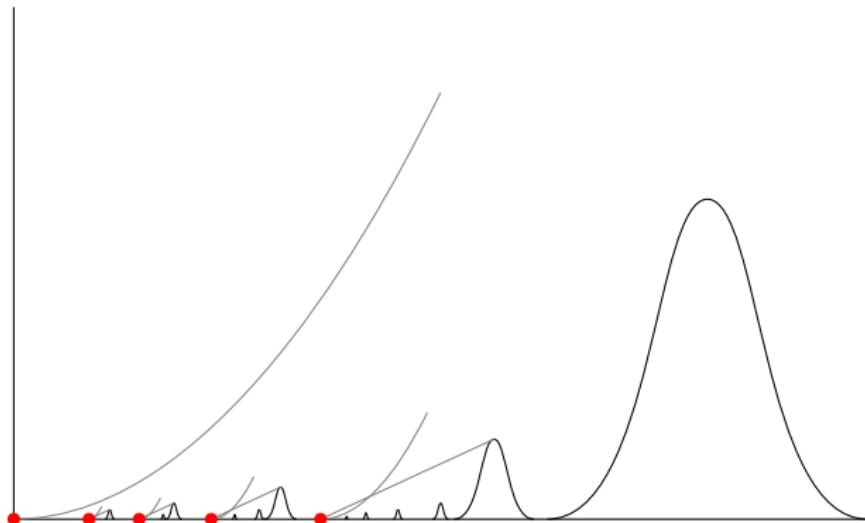
$$P^2 = \{0\}$$

$$P^3 = \emptyset$$

$$|f|_\varepsilon = 3$$

A rank on D_ε functions

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \right\}$$



A rank 3 function.

$$P^0 = [0, 1]$$

$$P^1$$

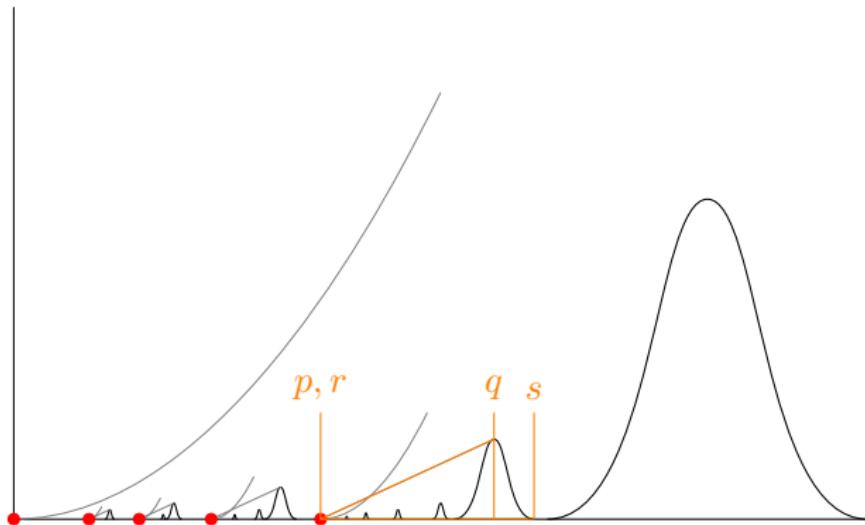
$$P^2 = \{0\}$$

$$P^3 = \emptyset$$

$$|f|_\varepsilon = 3$$

A rank on D_ε functions

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \right\}$$



A rank 3 function.

$$P^0 = [0, 1]$$

$$P^1$$

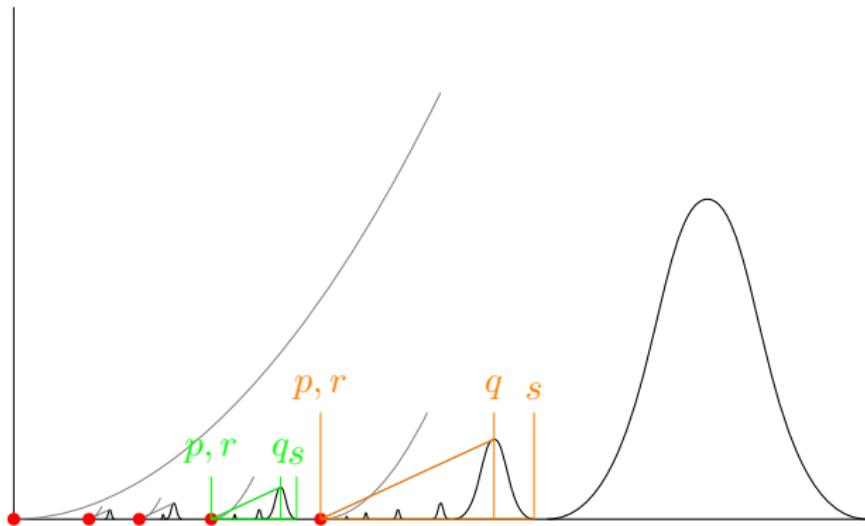
$$P^2 = \{0\}$$

$$P^3 = \emptyset$$

$$|f|_\varepsilon = 3$$

A rank on D_ε functions

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \right\}$$



A rank 3 function.

$$P^0 = [0, 1]$$

$$P^1$$

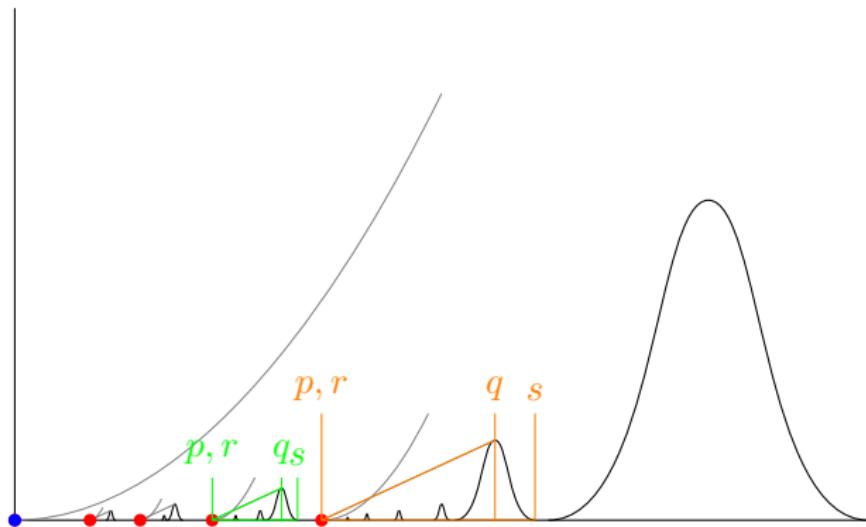
$$P^2 = \{0\}$$

$$P^3 = \emptyset$$

$$|f|_\varepsilon = 3$$

A rank on D_ε functions

$$P^{\alpha+1} = \left\{ x \in P^\alpha : \text{ For all open intervals } I \ni x, \text{ there are } p, q, r, s \in I \text{ s.t. } \left| \frac{f(p)-f(q)}{p-q} - \frac{f(r)-f(s)}{r-s} \right| > \varepsilon \text{ and } [p, q] \cap [r, s] \cap P^\alpha \neq \emptyset \right\}$$



A rank 3 function.

$$P^0 = [0, 1]$$

$$P^1$$

$$P^2 = \{0\}$$

$$P^3 = \emptyset$$

$$|f|_\varepsilon = 3$$

Our Goal

Definition (Ash-Knight, 2000)

For infinite α , X is Σ_α if $X \equiv_1 H_{2^\alpha}$ for any a with $|a|_{\mathcal{O}} = \alpha$.

Remark: Here $(\emptyset^{(\omega)})'$ is a Σ_ω -complete set.

Theorem (W)

The set $\{f : |f|_\varepsilon < \alpha + 1\}$ is $\Sigma_{2\alpha}$ -complete for any constructive ordinal $\alpha > 0$.

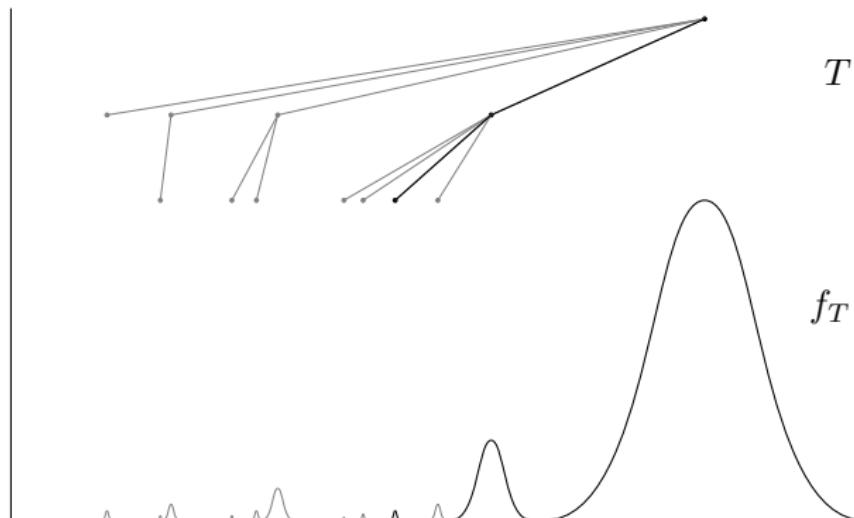
- Easy direction: $\{f : |f|_\varepsilon < \alpha + 1\}$ is $\Sigma_{2\alpha}$.
- Hard direction: Requires a reduction $(\Sigma_{2\alpha}, \Pi_{2\alpha}) \rightarrow (|f|_\varepsilon \leq \alpha, |f|_\varepsilon > \alpha)$.

A finer analysis

We return to the $(WF, \neg WF) \rightarrow (D, \neg D_\varepsilon)$ reduction.

If T is WF , then $|f_T|_\varepsilon$ exists.

But $|f_T|_\varepsilon$ is not, in general, equal to the well-founded rank of T .



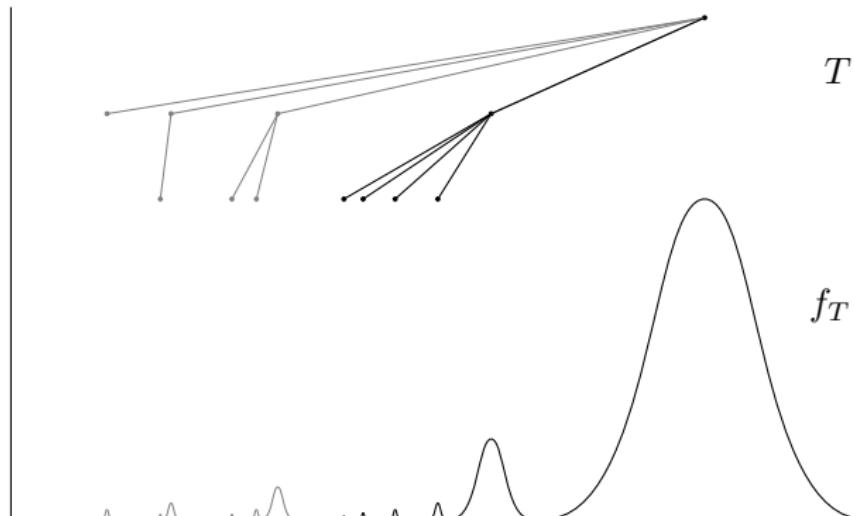
The well-founded rank
of T is 3, but $|f_T|_\varepsilon = 1$.

Differentiability

We return to the $(WF, \neg WF) \rightarrow (D, \neg D_\varepsilon)$ reduction.

If T is WF , then $|f|_\varepsilon$ exists.

But it is not, in general, the well-founded rank of T .



The well-founded rank of T is still 3, but now $|f_T|_\varepsilon = 2$.

How can one control the rank of f_T ?

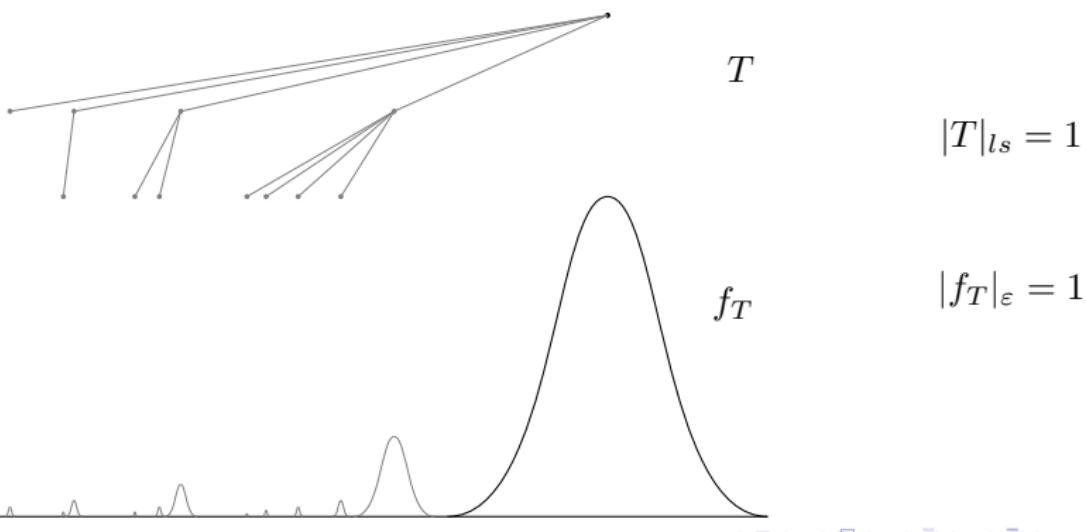
We will define an alternate rank on trees to answer this question.

Limsup rank

Definition

The **limsup rank** of a well-founded tree T is 0 if $T = \emptyset$ and

$$|T|_{ls} = \max(\sup_n |T_n|_{ls}, [\limsup_n |T_n|_{ls}] + 1) \text{ otherwise.}$$

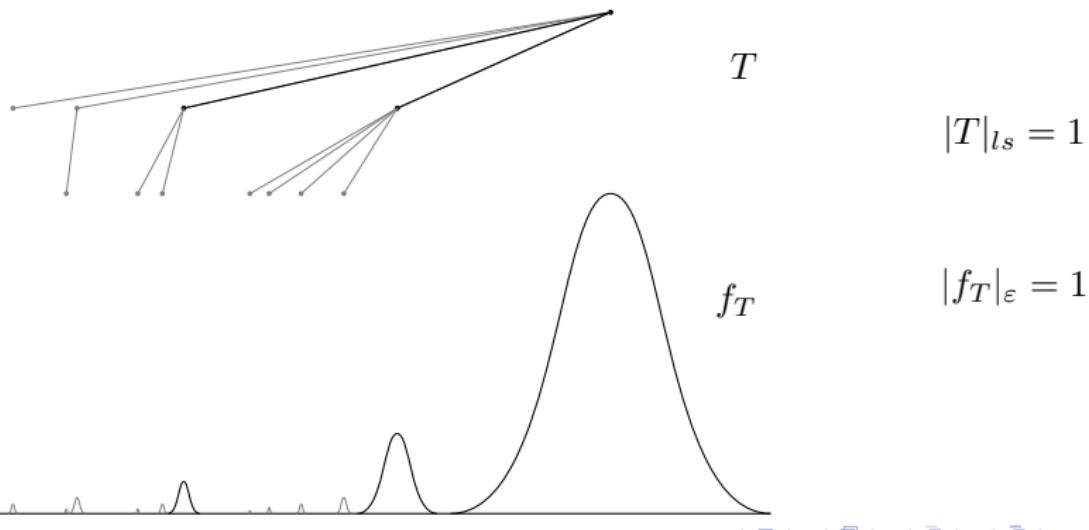


Limsup rank

Definition

The **limsup rank** of a well-founded tree T is 0 if $T = \emptyset$ and

$$|T|_{ls} = \max(\sup_n |T_n|_{ls}, [\limsup_n |T_n|_{ls}] + 1) \text{ otherwise.}$$

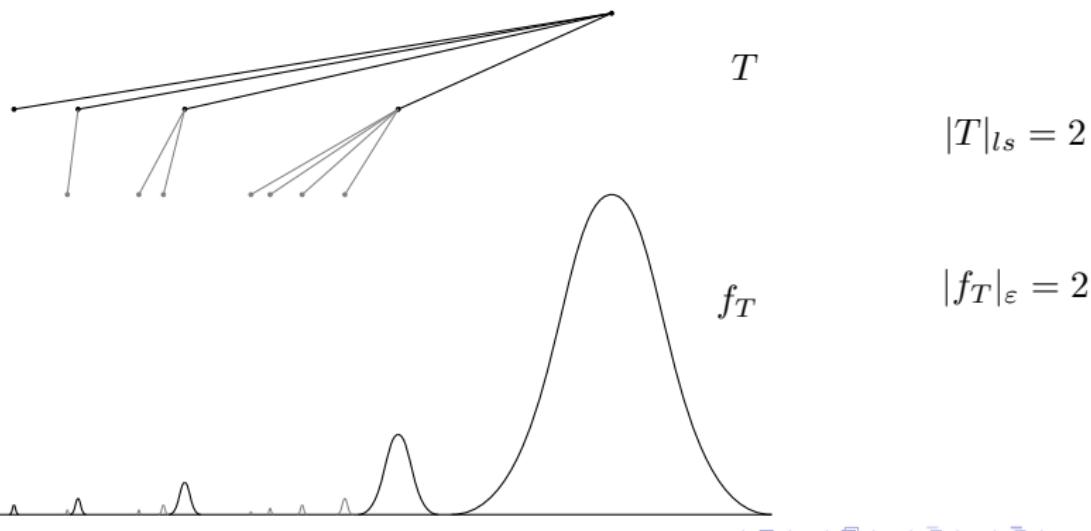


Limsup rank

Definition

The **limsup rank** of a well-founded tree T is 0 if $T = \emptyset$ and

$$|T|_{ls} = \max(\sup_n |T_n|_{ls}, [\limsup_n |T_n|_{ls}] + 1) \text{ otherwise.}$$

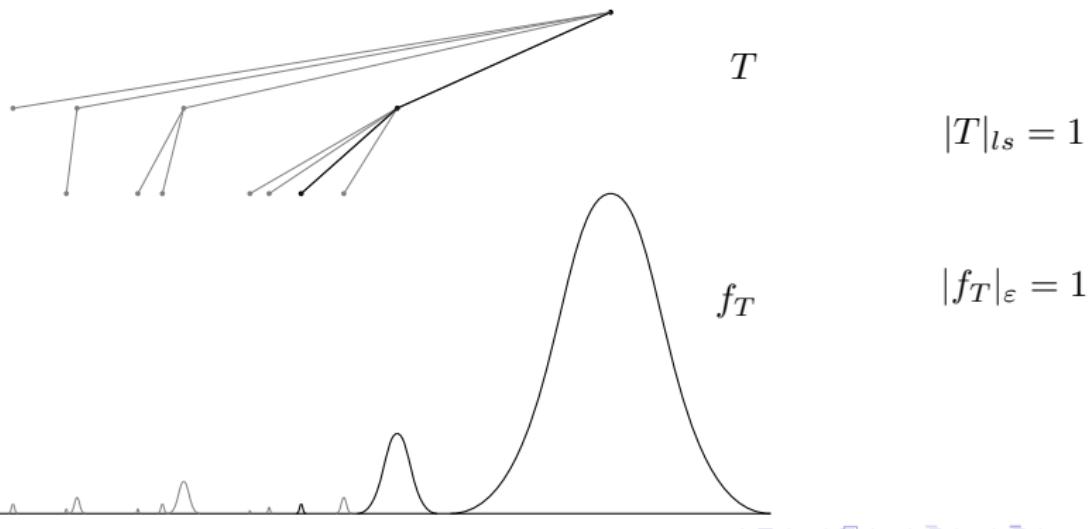


Limsup rank

Definition

The **limsup rank** of a well-founded tree T is 0 if $T = \emptyset$ and

$$|T|_{ls} = \max(\sup_n |T_n|_{ls}, [\limsup_n |T_n|_{ls}] + 1) \text{ otherwise.}$$

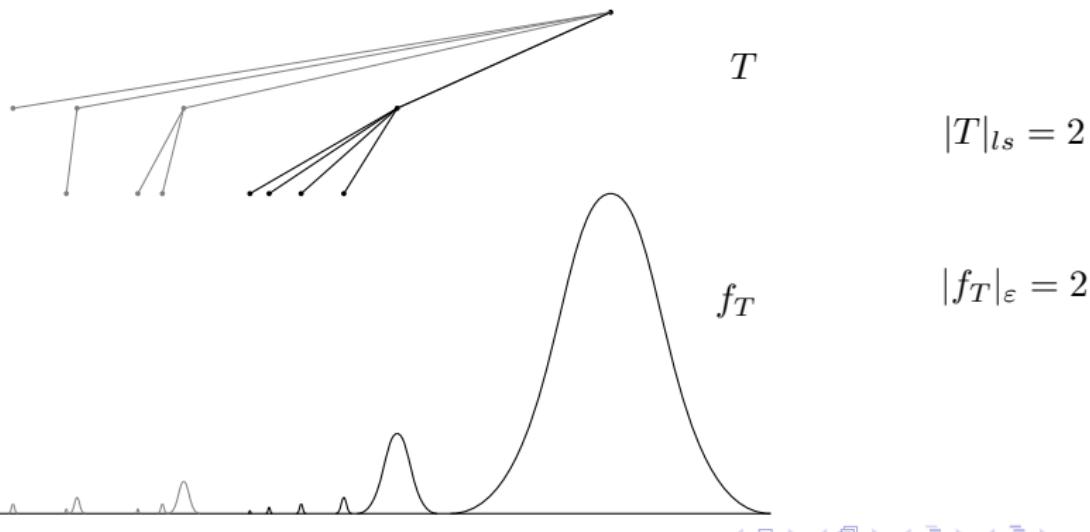


Limsup rank

Definition

The **limsup rank** of a well-founded tree T is 0 if $T = \emptyset$ and

$$|T|_{ls} = \max(\sup_n |T_n|_{ls}, [\limsup_n |T_n|_{ls}] + 1) \text{ otherwise.}$$



Results

Lemma

For all well-founded nonempty T , we have $|T|_{ls} = |f_T|_\varepsilon$.

Results

Lemma

For all well-founded nonempty T , we have $|T|_{ls} = |f_T|_\varepsilon$.

Theorem (W)

Uniformly in a finite sequence of statements P_1, \dots, P_k , where each P_i is $\Sigma_{2\alpha_i}$, one may produce a tree $T(P_1, \dots, P_k)$ such that

$$|T|_{ls} = \begin{cases} \leq \alpha_i & \text{for each } i \text{ such that } P_i \text{ holds} \\ \max_i \alpha_i + 1 & \text{if all statements fail} \end{cases}$$

Results

Lemma

For all well-founded nonempty T , we have $|T|_{ls} = |f_T|_\varepsilon$.

Theorem (W)

Uniformly in a finite sequence of statements P_1, \dots, P_k , where each P_i is $\Sigma_{2\alpha_i}$, one may produce a tree $T(P_1, \dots, P_k)$ such that

$$|T|_{ls} = \begin{cases} \leq \alpha_i & \text{for each } i \text{ such that } P_i \text{ holds} \\ \max_i \alpha_i + 1 & \text{if all statements fail} \end{cases}$$

Corollary

For constructive α , $\{T : |T|_{ls} < \alpha + 1\}$ is $\Sigma_{2\alpha}$ -complete.

Results

Lemma

For all well-founded nonempty T , we have $|T|_{ls} = |f_T|_\varepsilon$.

Theorem (W)

Uniformly in a finite sequence of statements P_1, \dots, P_k , where each P_i is $\Sigma_{2\alpha_i}$, one may produce a tree $T(P_1, \dots, P_k)$ such that

$$|T|_{ls} = \begin{cases} \leq \alpha_i & \text{for each } i \text{ such that } P_i \text{ holds} \\ \max_i \alpha_i + 1 & \text{if all statements fail} \end{cases}$$

Corollary

For constructive α , $\{T : |T|_{ls} < \alpha + 1\}$ is $\Sigma_{2\alpha}$ -complete.

Corollary

For constructive $\alpha > 0$, $\{f : |f|_\varepsilon < \alpha + 1\}$ is $\Sigma_{2\alpha}$ -complete.

Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let D^α denote the α th Cantor-Bendixson derivative. For each constructive $\alpha > 0$, the set $\{T \subseteq 2^{<\omega} : T \text{ has no dead ends and } D^\alpha(T) = \emptyset\}$ is $\Sigma_{2\alpha}$ -complete.

These sets are naively $\Sigma_{2\alpha}$.

If $[S] \subseteq 2^{<\omega}$ is countable, let $|S|_{CB}$ denote the least α such that $D^\alpha S = \emptyset$.

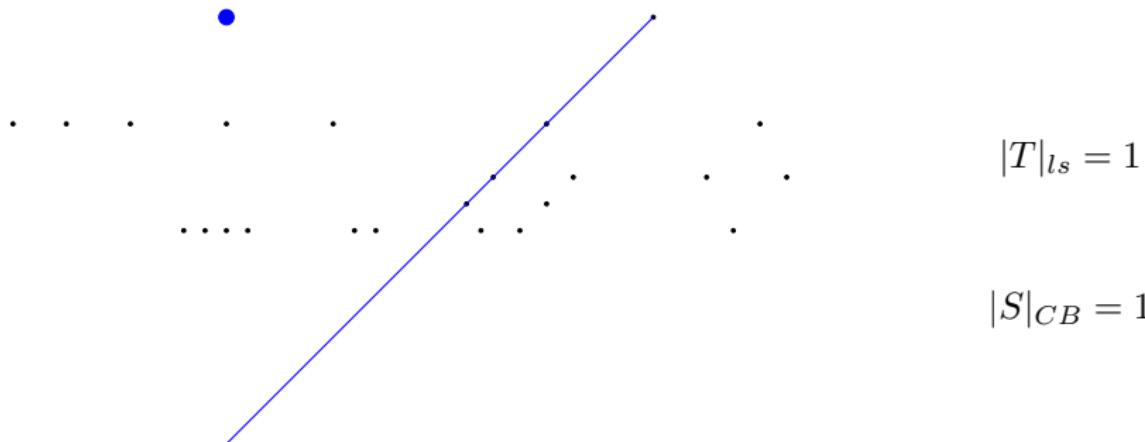
Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let D^α denote the α th Cantor-Bendixson derivative. For each constructive $\alpha > 0$, the set $\{T \subseteq 2^{<\omega} : T \text{ has no dead ends and } D^\alpha(T) = \emptyset\}$ is $\Sigma_{2\alpha}$ -complete.

These sets are naively $\Sigma_{2\alpha}$.

If $[S] \subseteq 2^{<\omega}$ is countable, let $|S|_{CB}$ denote the least α such that $D^\alpha S = \emptyset$.



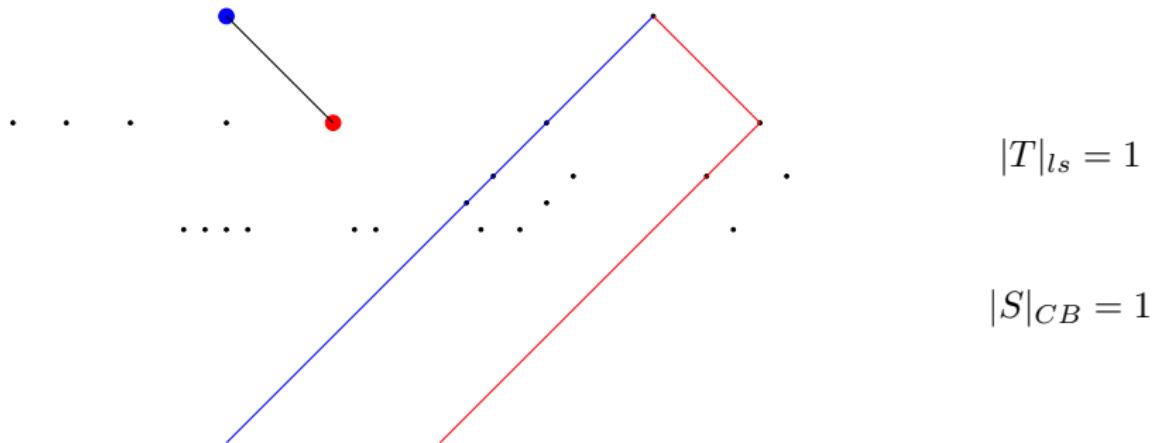
Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let D^α denote the α th Cantor-Bendixson derivative. For each constructive $\alpha > 0$, the set $\{T \subseteq 2^{<\omega} : T \text{ has no dead ends and } D^\alpha(T) = \emptyset\}$ is $\Sigma_{2\alpha}$ -complete.

These sets are naively $\Sigma_{2\alpha}$.

If $[S] \subseteq 2^{<\omega}$ is countable, let $|S|_{CB}$ denote the least α such that $D^\alpha S = \emptyset$.



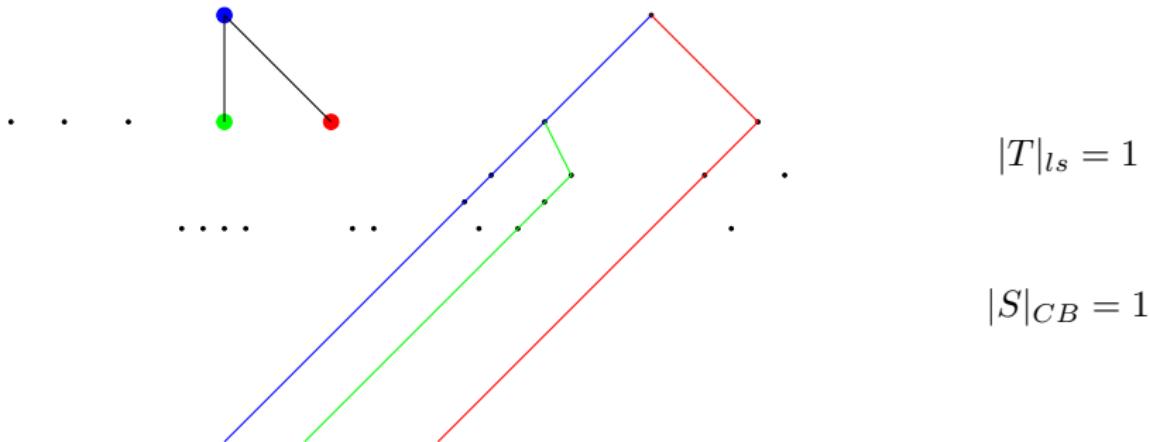
Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let D^α denote the α th Cantor-Bendixson derivative. For each constructive $\alpha > 0$, the set $\{T \subseteq 2^{<\omega} : T \text{ has no dead ends and } D^\alpha(T) = \emptyset\}$ is $\Sigma_{2\alpha}$ -complete.

These sets are naively $\Sigma_{2\alpha}$.

If $[S] \subseteq 2^{<\omega}$ is countable, let $|S|_{CB}$ denote the least α such that $D^\alpha S = \emptyset$.



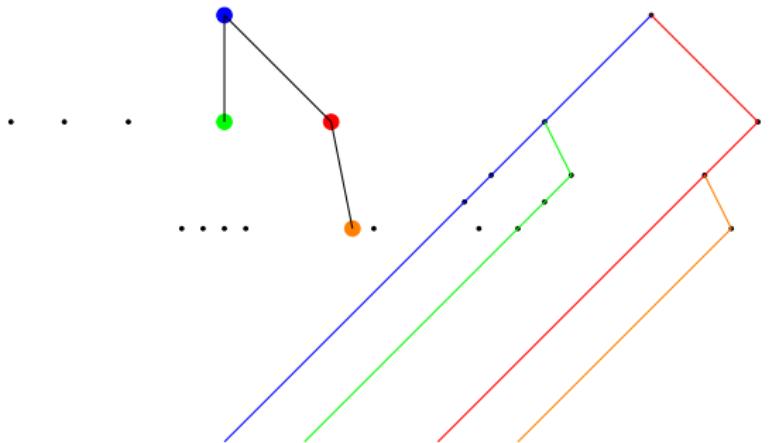
Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let D^α denote the α th Cantor-Bendixson derivative. For each constructive $\alpha > 0$, the set $\{T \subseteq 2^{<\omega} : T \text{ has no dead ends and } D^\alpha(T) = \emptyset\}$ is $\Sigma_{2\alpha}$ -complete.

These sets are naively $\Sigma_{2\alpha}$.

If $[S] \subseteq 2^{<\omega}$ is countable, let $|S|_{CB}$ denote the least α such that $D^\alpha S = \emptyset$.



$$|T|_{ls} = 1$$

$$|S|_{CB} = 1$$

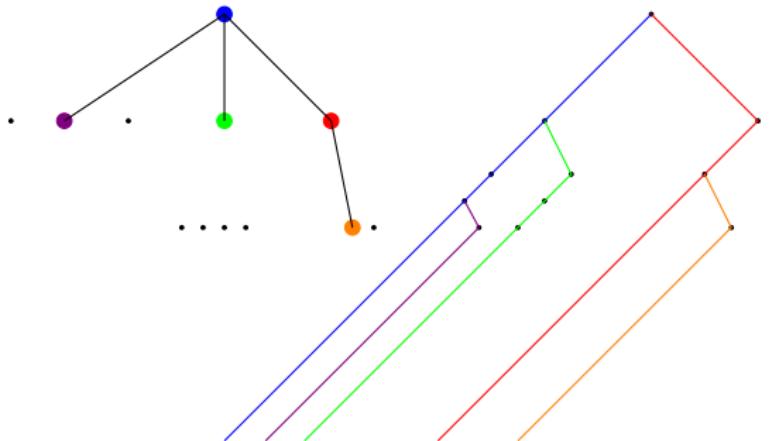
Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let D^α denote the α th Cantor-Bendixson derivative. For each constructive $\alpha > 0$, the set $\{T \subseteq 2^{<\omega} : T \text{ has no dead ends and } D^\alpha(T) = \emptyset\}$ is $\Sigma_{2\alpha}$ -complete.

These sets are naively $\Sigma_{2\alpha}$.

If $[S] \subseteq 2^{<\omega}$ is countable, let $|S|_{CB}$ denote the least α such that $D^\alpha S = \emptyset$.



$$|S|_{CB} = 1$$

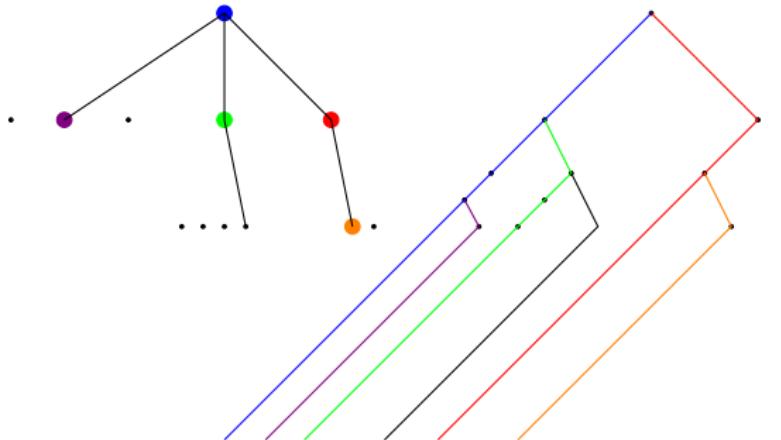
Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let D^α denote the α th Cantor-Bendixson derivative. For each constructive $\alpha > 0$, the set $\{T \subseteq 2^{<\omega} : T \text{ has no dead ends and } D^\alpha(T) = \emptyset\}$ is $\Sigma_{2\alpha}$ -complete.

These sets are naively $\Sigma_{2\alpha}$.

If $[S] \subseteq 2^{<\omega}$ is countable, let $|S|_{CB}$ denote the least α such that $D^\alpha S = \emptyset$.



$$|S|_{CB} = 1$$

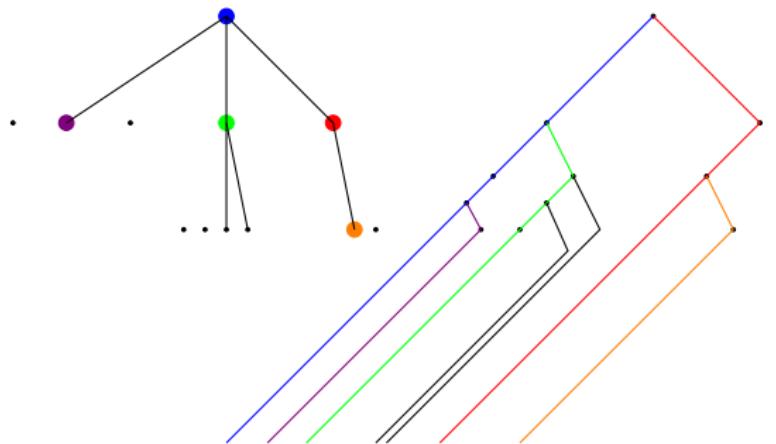
Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let D^α denote the α th Cantor-Bendixson derivative. For each constructive $\alpha > 0$, the set $\{T \subseteq 2^{<\omega} : T \text{ has no dead ends and } D^\alpha(T) = \emptyset\}$ is $\Sigma_{2\alpha}$ -complete.

These sets are naively $\Sigma_{2\alpha}$.

If $[S] \subseteq 2^{<\omega}$ is countable, let $|S|_{CB}$ denote the least α such that $D^\alpha S = \emptyset$.



$$|T|_{ls} = 1$$

$$|S|_{CB} = 1$$

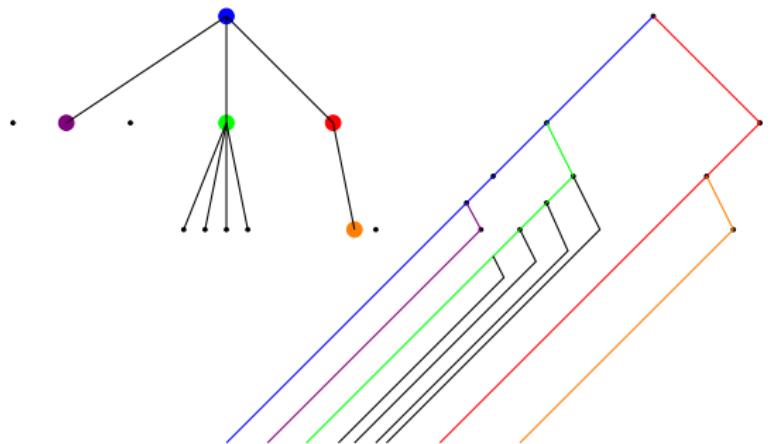
Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let D^α denote the α th Cantor-Bendixson derivative. For each constructive $\alpha > 0$, the set $\{T \subseteq 2^{<\omega} : T \text{ has no dead ends and } D^\alpha([T]) = \emptyset\}$ is $\Sigma_{2\alpha}$ -complete.

These sets are naively $\Sigma_{2\alpha}$.

If $S \subseteq 2^{<\omega}$ is countable, let $|S|_{CB}$ denote the least α such that $D^\alpha S = \emptyset$.



$$|T|_{ls} = 2$$

$$|S|_{CB} = 2$$

Denjoy integration

Definition

A function $F \in C[0, 1]$ is a Denjoy integral if $F(x) = \int_0^x f(x)dx$ for some measurable function f , where \int refers to the transfinite process of Denjoy integration (not defined here).

Definition

A Denjoy integral F has rank α if the integration process that produced it takes α steps. We write $|F|_D = \alpha$.

One may define a computable reduction $T \mapsto F_T$ from WF to $C[0, 1]$ such that for each $T \in WF$, $|T|_{ls} = |F_T|_D$.

Corollary

For each constructive $\alpha > 1$, $\{F : |F|_D < \alpha + 1\}$ is $\Sigma_{2\alpha}$ -complete.

Unifying Principle

Each node in our trees T can be mapped to a "unit of badness" in a hierarchy classification problem.

- For differentiation, a unit of badness is a pair of disagreeing secants.
- For Cantor-Bendixson rank, a unit of badness is a path.
- For Denjoy integration, a unit of badness is an increase in total variation.