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Differentiability

Let D = {f € C[0,1] : f is differentiable}.

feD <<=V <}1ng6 w exists)

Va(VeISVh(|h| < 6 — ...))

D is H%.

{f : f is differentiable} is ITi-complete.

Linda Brown Westrick ( University of CA Lightface Ana of the Differentiabi October 19, 2013



Differentiability

Mazurkiewicz, 1936

f : f is differentiable} is ITi-complete.
1

Proof: Construct a reduction (' € WE, T ¢ WF) — (f € D, f ¢ D).
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Differentiability

Mazurkiewicz, 1936
{f : f is differentiable} is ITi-complete.

Proof: Construct a reduction (' € WE, T ¢ WF) — (f € D, f ¢ D).
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Differentiability

Mazurkiewicz, 1936

f : f is differentiable} is ITi-complete.
1

Proof: Construct a reduction (' € WE, T ¢ WF) — (f € D, f ¢ D).

Suppose T is
well-founded and each
fr, is differentiable.
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Differentiability

Mazurkiewicz, 1936

f : f is differentiable} is ITi-complete.
1

Proof: Construct a reduction (' € WE, T ¢ WF) — (f € D, f ¢ D).

T, To
fr
4 fT1 fTo
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Suppose T is
well-founded and each
fr, is differentiable.

Then fr is
differentiable.
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Differentiability

Mazurkiewicz, 1936
{f : f is differentiable} is IT}-complete.

Proof: Construct a reduction ('€ WF,T ¢ WF) — (f € D, f ¢ D).

Suppose T is

T ill-founded.

Then fr is not
fr differentiable.
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Differentiability

Mazurkiewicz, 1936

{f : f is differentiable} is IT}-complete.

Proof: Construct a reduction ('€ WF,T ¢ WF) — (f € D, f ¢ D).

Suppose T is

T ill-founded.

Then fr is not
fr differentiable.

In fact, the oscillation
=€ of {r@+th)—fr(=z)
h

is €.
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e-differentiability

o Let D, denote the functions f for which |D_f(z) — D~ f(z)| <e.

o We wanted:
(WF,-WF)— (D,-D).

o We got a stronger result:
(WF,-WF)— (D,-D,).

e Everything that is hard about D shows up in D..

e Things are nicer in D., so we restrict our attention there.

e Note:
D= D-.
e>0

e By definition D is II}. The stronger result showed D is I1}-complete.
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A rank on D, functions

Given f, Kechris and Woodin defined a transfinite sequence of closed sets
which eventually become empty if and only if f € D..

Definition (Kechris-Woodin 1986)

P% =10,1]
potl — {:v e P*: conditions }
PA = ﬁoc<)\F)a

Definition
If f € De, then |f|c denotes the least « for which P* = .
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Given f, Kechris and Woodin defined a transfinite sequence of closed sets
which eventually become empty if and only if f € D..

Definition (Kechris-Woodin 1986)

= [O) 1]
For all open intervals I > z, there are p,q,r,s € I s.t.
Pl =qzeP*: |fp)- 1@ _ [0)=1
‘ (p)—f(g D2 > e and [p,q] N [r,s]N P> # 0

P/\ = r\|0¢<)\—Pw

Definition
If f € D, then |f|. denotes the least o for which P* = {)
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A rank on D, functions

o For all open intervals I > x, there are p,q,r,s € I s.t.
e =qre ‘f(p;:éc(q) - f(z):i(s) >e¢eand [p,g]N[r,s]NP*#£0

A rank 1 function.
P° =10,1]

Pt

|f|€ =1
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A rank on D, functions

o For all open intervals I 5 x,there are p,q,r, s € I s.t.
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A rank 2 function.
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A rank on D, functions

o For all open intervals I 5 x,there are p,q,r, s € I s.t.
[e3 — (678N
PETET [eta  LO0) 5 ¢ and [p,q) 0 [r,5] 0 P £

A rank 3 function.

PO =0,1]
P]

{0}
P
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Definition (Ash-Knight, 2000)

For infinite o, X is X, if X =; Hs. for any a with |a|o = a.

Remark: Here ()" is a ¥,,-complete set.

The set {f : |fle < a+ 1} is Xon-complete for any constructive ordinal o > 0.

e Easy direction: {f : |f|lc < a+ 1} is Xaq.
e Hard direction: Requires a reduction (Xo4,1l24) — (|flc < ,|f|e > ).
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A finer analysis

We return to the (WFE,-WF) — (D,—D,) reduction.
If T is WF, then |fr|. exists.

But |fr|c is not, in general, equal to the well-founded rank of T

The well-founded rank
of T'is 3, but |fr|. = 1.
Ir
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Differentiability

We return to the (WF,-WF) — (D,—-D,) reduction.
If T is WF, then |f]|. exists.
But it is not, in general, the well-founded rank of 7.

The well-founded rank
T of T is still 3, but now

|fT|€ =2.

How can one control
the rank of fr?

Ir
We will define an
alternate rank on trees

/\ to answer this question.
an N
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Limsup rank

The limsup rank of a well-founded tree 7" is 0 if T'= () and

IT|;s = max(sup |Ty s, [lim sup T, ;5] + 1) otherwise.

|T|ls =1

fr |fT|a:1
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Limsup rank

The limsup rank of a well-founded tree 7" is 0 if T'= () and

IT|;s = max(sup |Ty s, [lim sup T, ;5] + 1) otherwise.
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|T|ls =2

fr |J0T|6:2
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Limsup rank

The limsup rank of a well-founded tree 7" is 0 if T'= () and
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|T|ls =2
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Results

For all well-founded nonempty T, we have |T|;s = |fr]e-
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For all well-founded nonempty T, we have |T|;s = |fr]e-

Theorem (W)

Uniformly in a finite sequence of statements P, ..., Py, where each P; is ¥a,,,
one may produce a tree T(Py, ..., Py) such that

IT]he = < for each i such that P; holds
b max; a; + 1 if all statements fail
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For all well-founded nonempty T, we have |T|;s = |fr]e-

Theorem (W)

Uniformly in a finite sequence of statements P, ..., Py, where each P; is ¥a,,,
one may produce a tree T(Py, ..., Py) such that

7] {S a; for each i such that P; holds
ls —

max; a; + 1 if all statements fail

For constructive o, {T : |T|1s < o+ 1} is Baq-complete.

For constructive a > 0, {f : |fle < a+ 1} is Xan-complete.

Linda Brown Westrick ( University of CA Lightface Analy f the Differentiabi October 19, 2013



Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let D% denote the ath Cantor-Bendixson derivative. For each constructive
a >0, the set {T C 2<% : T has no dead ends and D*(T) = 0} is
Yo -complete.

These sets are naively Yo,.
If [S] C 2<% is countable, let |S|cp denote the least a such that D*S = ().
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Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let D% denote the ath Cantor-Bendixson derivative. For each constructive
a >0, the set {T C 2<% : T has no dead ends and D*([T]) = 0} is
Yo -complete.

These sets are naively Yo,.
If S C 2<% is countable, let |S|cp denote the least « such that D*S = 0.

|T|ls =2

|Slep =2
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Denjoy integration

Definition

A function F € C[0,1] is a Denjoy integral if F(z) = [ f(z)dz for some
measurable function f, where f refers to the transﬁmte process of Denjoy
integration (not defined here).

| A

Definition

A Denjoy integral F' has rank « if the integration process that produced it
takes « steps. We write |F|p = a.

A\

One may define a computable reduction T' — Fr from WF to C|0, 1] such
that for each T'e WF, |T|;s = |Fr|p.

For each constructive o > 1, {F : |F|p < o+ 1} is g, -complete.
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Unifying Principle

Each node in our trees T' can be mapped to a ”unit of badness” in a hierarchy
classification problem.

o For differentiation, a unit of badness is a pair of disagreeing secants.
e For Cantor-Bendixson rank, a unit of badness is a path.

e For Denjoy integration, a unit of badness is an increase in total variation.
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