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Differentiability

Let D = {f ∈ C[0, 1] : f is differentiable}.

f ∈ D ⇐⇒ ∀x
(

lim
h→0

f(x+ h)− f(x)

h
exists

)
∀x(∀ε∃δ∀h(|h| < δ → . . . ))

D is Π1
1.

Mazurkiewicz, 1936

{f : f is differentiable} is Π1
1-complete.
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Differentiability

Mazurkiewicz, 1936

{f : f is differentiable} is Π1
1-complete.

Proof: Construct a reduction (T ∈WF,T /∈WF )→ (f ∈ D, f /∈ D).

T

fT
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Differentiability

Mazurkiewicz, 1936

{f : f is differentiable} is Π1
1-complete.

Proof: Construct a reduction (T ∈WF,T /∈WF )→ (f ∈ D, f /∈ D).

T

fT

T0

fT0

T1

fT1

Suppose T is
well-founded and each
fTn

is differentiable.

Then fT is
differentiable.

Linda Brown Westrick ( University of California, Berkeley Computability Across Mathematics @ AMS St. Louis)A Lightface Analysis of the Differentiability Rank October 19, 2013 4 / 1



Differentiability

Mazurkiewicz, 1936

{f : f is differentiable} is Π1
1-complete.

Proof: Construct a reduction (T ∈WF,T /∈WF )→ (f ∈ D, f /∈ D).

T

fT

T0

fT0

T1

fT1

Suppose T is
well-founded and each
fTn

is differentiable.

Then fT is
differentiable.

Linda Brown Westrick ( University of California, Berkeley Computability Across Mathematics @ AMS St. Louis)A Lightface Analysis of the Differentiability Rank October 19, 2013 4 / 1



Differentiability

Mazurkiewicz, 1936

{f : f is differentiable} is Π1
1-complete.

Proof: Construct a reduction (T ∈WF,T /∈WF )→ (f ∈ D, f /∈ D).

T

fT

x

slope = ε

Suppose T is
ill-founded.

Then fT is not
differentiable.
In fact, the oscillation

of fT (x+h)−fT (x)
h is ε.
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ε-differentiability

Let Dε denote the functions f for which |D−f(x)−D−f(x)| ≤ ε.
We wanted:

(WF,¬WF )→ (D,¬D).

We got a stronger result:

(WF,¬WF )→ (D,¬Dε).

Everything that is hard about D shows up in Dε.

Things are nicer in Dε, so we restrict our attention there.

Note:
D =

⋂
ε>0

Dε.

By definition Dε is Π1
1. The stronger result showed Dε is Π1

1-complete.
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A rank on Dε functions

Given f , Kechris and Woodin defined a transfinite sequence of closed sets
which eventually become empty if and only if f ∈ Dε.

Definition (Kechris-Woodin 1986)

P 0 = [0, 1]

Pα+1 =
{
x ∈ Pα : conditions

}
Pλ = ∩α<λPα

Definition

If f ∈ Dε, then |f |ε denotes the least α for which Pα = ∅.
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A rank on Dε functions
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{
x ∈ Pα :
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Our Goal

Definition (Ash-Knight, 2000)

For infinite α, X is Σα if X ≡1 H2a for any a with |a|O = α.

Remark: Here (∅(ω))′ is a Σω-complete set.

Theorem (W)

The set {f : |f |ε < α+ 1} is Σ2α-complete for any constructive ordinal α > 0.

Easy direction: {f : |f |ε < α+ 1} is Σ2α.

Hard direction: Requires a reduction (Σ2α,Π2α)→ (|f |ε ≤ α, |f |ε > α).
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A finer analysis

We return to the (WF,¬WF )→ (D,¬Dε) reduction.
If T is WF , then |fT |ε exists.
But |fT |ε is not, in general, equal to the well-founded rank of T .

T

fT

The well-founded rank
of T is 3, but |fT |ε = 1.
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Differentiability

We return to the (WF,¬WF )→ (D,¬Dε) reduction.
If T is WF , then |f |ε exists.
But it is not, in general, the well-founded rank of T .

T

fT

The well-founded rank
of T is still 3, but now
|fT |ε = 2.

How can one control
the rank of fT ?

We will define an
alternate rank on trees
to answer this question.
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Limsup rank

Definition

The limsup rank of a well-founded tree T is 0 if T = ∅ and

|T |ls = max(sup
n
|Tn|ls, [lim sup

n
|Tn|ls] + 1) otherwise.

T

fT

|T |ls = 1

|fT |ε = 1
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Results

Lemma

For all well-founded nonempty T , we have |T |ls = |fT |ε.

Theorem (W)

Uniformly in a finite sequence of statements P1, . . . , Pk, where each Pi is Σ2αi
,

one may produce a tree T (P1, . . . , Pk) such that

|T |ls =

{
≤ αi for each i such that Pi holds

maxi αi + 1 if all statements fail

Corollary

For constructive α, {T : |T |ls < α+ 1} is Σ2α-complete.

Corollary

For constructive α > 0, {f : |f |ε < α+ 1} is Σ2α-complete.
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one may produce a tree T (P1, . . . , Pk) such that

|T |ls =

{
≤ αi for each i such that Pi holds

maxi αi + 1 if all statements fail

Corollary

For constructive α, {T : |T |ls < α+ 1} is Σ2α-complete.

Corollary

For constructive α > 0, {f : |f |ε < α+ 1} is Σ2α-complete.
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Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let Dα denote the αth Cantor-Bendixson derivative. For each constructive
α > 0, the set {T ⊆ 2<ω : T has no dead ends and Dα(T ) = ∅} is
Σ2α-complete.

These sets are naively Σ2α.
If [S] ⊆ 2<ω is countable, let |S|CB denote the least α such that DαS = ∅.

|T |ls = 1

|S|CB = 1
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Cantor-Bendixson Rank

Corollary (Lempp 1987)

Let Dα denote the αth Cantor-Bendixson derivative. For each constructive
α > 0, the set {T ⊆ 2<ω : T has no dead ends and Dα([T ]) = ∅} is
Σ2α-complete.

These sets are naively Σ2α.
If S ⊆ 2<ω is countable, let |S|CB denote the least α such that DαS = ∅.

|T |ls = 2

|S|CB = 2
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Denjoy integration

Definition

A function F ∈ C[0, 1] is a Denjoy integral if F (x) =
∫ x
0
f(x)dx for some

measurable function f , where
∫

refers to the transfinite process of Denjoy
integration (not defined here).

Definition
A Denjoy integral F has rank α if the integration process that produced it
takes α steps. We write |F |D = α.

One may define a computable reduction T 7→ FT from WF to C[0, 1] such
that for each T ∈WF , |T |ls = |FT |D.

Corollary

For each constructive α > 1, {F : |F |D < α+ 1} is Σ2α-complete.
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Unifying Principle

Each node in our trees T can be mapped to a ”unit of badness” in a hierarchy
classification problem.

For differentiation, a unit of badness is a pair of disagreeing secants.

For Cantor-Bendixson rank, a unit of badness is a path.

For Denjoy integration, a unit of badness is an increase in total variation.
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