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Subshifts

Definition

A subshift is a subset of 2N that is both

topologically closed

closed under the shift operation x0x1 . . . 7→ x1x2 . . .

For any F ⊆ 2<N, XF = {x ∈ 2N : ∀σ ∈ F, σ does not occur in x} is a
subshift.

Subshifts are characterized by their set of forbidden strings.

Different F can define the same subshift.

Variations: Replace 2 with any finite alphabet. Replace N with G, where
G is Nd or Zd and d is any positive integer. Consider only those subshifts
generated by c.e. F , or by finite F .
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Examples

The full shift 2N.

The golden mean shift XF where F = {11}.
The (d, b)-shift-complex shift XF where

F = {σ : K(σ) < d|σ| − b}

and K is Kolmogorov complexity. (Miller 2012 showed that for each
d < 1, there is a b for which this subshift is non-empty; the existence of
d-shift complex sequences was first shown by Durand, Levin and Shen
2008.)

If X ⊆ AG and Y ⊆ BG are subshifts, then X × Y ⊆ (A×B)G is a
subshift, with the shift operation acting pointwise on each (x, y) ∈ X × Y .
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Computability and Symbolic Dynamics

Cenzer, Dashti, King 2008 and Cenzer, Dashti, Toska, Wyman 2012. Π0
1

subshifts, Turing degrees of elements of countable subshifts.

Spandl, Hertling 2008. Entropies of subshifts with computable language.

Simpson 2007 and Miller 2012. Medvedev degrees of 2-dimensional shifts
of finite type (Simpson) and 1-dimensional shifts with a c.e. set of
forbidden words (Miller).

Simpson 2011. For any subshift X (including all variations)

entropy(X) = Hausdorf Dimension(X) = max
x∈X

dimx,

where dim is the constructive dimension.

Hochman and Meyerovitch 2010. Characterization of the entropies of
multidimensional subshifts of finite type.
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Outline of the Talk

I will consider three subshift invariants.

Entropy (expository section)

Medvedev degree (and its independence from entropy)

Effective dimension spectrum (to be defined)
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Entropy

Definition and properties.

Characterization of the entropies of Π0
1 subshifts.

Characterization of the entropies of shifts of finite type.
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Entropy

Definition

For X ⊆ 2N, the entropy of X is

ent(X) = lim
n→∞

log2 |{x � n : x ∈ X}|
n

.

This definition generalizes to X ⊆ 2G for G = Nd or Zd; divide by the
number of symbols in the sample.

This definition generalizes to X ⊆ AG for any finite A. If |A| > 2 then the
entropy may be greater than 1.

Theorem (Simpson)

For any subshift X, ent(X) = maxx∈X dimx, where dim is the effective
dimension.
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Entropy - basic properties

Definition

For X ⊆ 2N, the entropy of X is

ent(X) = lim
n→∞

log2 |{x � n : x ∈ X}|
n

.

If X and Y are subshifts,

ent(X × Y ) = ent(X) + ent(Y ).

If X is a Π0
1 subshift, ent(X) is right-r.e.
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Entropy characterization, Π0
1 case

Fact (Folklore?, Hertling-Spandl 2008)

For any (right-r.e.) s ∈ [0, 1), there is a one-dimensional (Π0
1) subshift with

entropy s.

A proof:

Letting s = 0.b1b2b3 . . . be the binary expansion of s, define a sequence
t ∈ {0, ∗}N as follows.

If b1 = 0, set every other bit of t to 0; else, set every other bit of t to ∗.
Repeat for b2, b3, . . . , each time filling in half the remaining bits.

The density of ∗ in t is s.

Forbid σ if it is impossible to replace some bits of σ with ∗ and obtain a
subword of t.

Fact (Folklore?)

In the previous Fact, “one-dimensional” may be replaced by “n-dimensional”
for any n.
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Entropy characterization, shifts of finite type

Definition

A subshift X is a shift of finite type (SFT) if X is obtained by forbidding
finitely many words.

Fact (classical)

The entropies of the one-dimensional SFTs are exactly the rational multiples
of the logarithms of the spectral radii of matrices with positive integer
coefficients. (Perron-Frobenius theory)

Theorem (Hochman-Meyerovitch 2010)

For n > 1, the entropies of the n-dimensional SFTs are exactly the right-r.e.
numbers.
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Medvedev Degree
and its independence from entropy

Definition and characterization.

Independence of Medvedev degree and entropy.

Independence in 2G.

A corollary concerning entropy.
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Medvedev degree

Definition

Give A,B ⊆ 2N, we say A is Medvedev reducible to B if there is a Turing
functional Γ such that for all X ∈ B, Γ(X) ∈ A.

Of course this generalizes when 2N is replaced with AG.

Theorem (Simpson 2007)

Let P be any Π0
1 class. Then there is a two-dimensional SFT Medvedev

equivalent to P .

Theorem (J. Miller 2012)

Let P be any Π0
1 class. Then there is a one-dimensional Π0

1 subshift Medvedev
equivalent to P .
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Independence of entropy and Medvedev degree

Proposition

For any right-r.e. s and any Π0
1 set P , there is a one-dimensional Π0

1 subshift
with entropy s that is Medvedev equivalent to P .

Proof:

Let MP be a Π0
1 subshift Medvedev equivalent to P as constructed by

Miller.

Let Xs be a Π0
1 subshift with entropy s as constructed earlier.

One may verify that ent(MP ) = 0, so ent(MP ×Xs) = ent(Xs) = s.

One may verify that MP ×Xs is Medvedev equivalent to P .

Proposition

In the previous proposition, one may replace “one-dimensional Π0
1 subshift”

with “two-dimensional SFT”.

Proof: The same, but using the constructions of Simpson 2007 and Hochman
& Meyerovitch 2010.
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Independence in 2G

The results of the previous slide used a symbol set of size at least four. In
order to obtain subshifts on only two symbols, a different strategy is needed.

Theorem

For any Π0
1 set P and any right-r.e. s ∈ [0, 1), there is a subshift X ⊆ 2N

Medvedev equivalent to P with entropy s.

Theorem

In the previous theorem, “a subshift X ⊆ 2N” may be replaced with “a SFT
X ⊆ 2Z

2

”.
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Independence of Medvedev degree and entropy in 2N

Theorem

For any Π0
1 set P and any right-r.e. s ∈ [0, 1), there is a subshift X ⊆ 2N

Medvedev equivalent to P with entropy s.

Proof:

Let N be odd and large enough that s′ = N
N−1s < 1.

Let Xs′ be a subshift of entropy s′ as described previously.

Let MP be a certain subshift of entropy zero and Medvedev degree of P .

The desired subshift Z ⊆ 2N is defined so that its elements z are exactly
those with the following property: there exist x ∈ Xs′ and m ∈MP so
that z = x on density N−1

N of its bits, and on the remaining density 1
N

bits (evenly spaced), the bits of m are recorded.

The effect of the superposition of the bits of m is to erase 1
N of the

information from x, so the entropy of Z is s.

One may verify the Medvedev degree.
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Independence of Medvedev degree and entropy in 2Z
2

Theorem

For any Π0
1 set P and any right-r.e. s ∈ [0, 1), there is a SFT X ⊆ 2Z

2

Medvedev equivalent to P with entropy s.

From Simpson 2007, we have a 2-dimensional SFT MP with the right
Medvedev degree.

From Hochman & Meyerovitch 2010, we can produce a 2-dimensional
SFT X with any right-r.e. entropy.

Both the above use many symbols! Each element of MP , X, encodes a
run of a Turing machine.

Each symbol of x ∈ X optionally encodes one bit of information; the
computation encoded by x determines the information density, and this
density is capped at the desired entropy.
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Independence of Medvedev degree and entropy in 2Z
2

Theorem

For any Π0
1 set P and any right-r.e. s ∈ [0, 1), there is a SFT X ⊆ 2Z

2

Medvedev equivalent to P with entropy s.

Proof:

Build an SFT Z out of MP and a HM-like X as follows.

Reserve a large density of bits of each z ∈ Z for entropy, leaving the rest
for computation.

In the computation portion, represent the symbols of MP and X using a
QR-code style representation.

Instead of each symbol of X controlling the expression of one bit of
information, let each bit of X control the expression of many bits from
the nearby entropy part of the subshift.

Adjust the density of the entropy part and the density of coding bits of X
so that they cancel each other, resulting in the desired entropy for Z.
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Effective dimension spectrum

Definition and properties

Examples

Minimal subshifts

Open questions
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Effective dimension spectrum

Definition

The effective dimension of x ∈ 2N is

dim(x) = lim inf
n→∞

K(x � n)

n
.

Definition
Let X be a subshift. The effective dimension spectrum of X is

DS(X) = {dim(x) : x ∈ X}.

Question: What sets A ⊆ [0, 1] can be effective dimension spectra?
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Restrictions on DS(X)

DS(X) is Σ1
1.

s ∈ DS(X) ⇐⇒ ∃x ∈ X lim inf
n→∞

K(x � n)

n
= s.

By the previously quoted theorem of Simpson, maxx∈X dimx exists. So
DS(X) has a maximum element.

If σ does not appear in any sequence of X, then all sequences of X may
be compressed by some fixed fraction related to the length of σ.
Therefore, unless X = 2N, DS(X) is bounded away from 1.
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Examples of Dimension Spectra

The full shift contains every real, so DS(2N) = [0, 1].

The countable subshifts studied by Cenzer, Dashti, Toska and Wyman,
and the Medvedev degree related subshifts of Miller all have entropy 0.
Recall that for X a subshift, entropy(X) = maxx∈X dimx. So the
dimension spectrum is {0} for all of those subshifts.

The entropy-s shifts Xs from earlier have spectrum [0, s].

A shift of finite type is a shift of the form XF where F is finite.

Theorem

If X is a shift of finite type, then DS(X) = [0, entropy(X)].

Most commonly encountered subshifts have dimension spectrum of the form
[0, entX].
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Theorem

If X is a shift of finite type, then DS(X) = [0, entropy(X)].

Most commonly encountered subshifts have dimension spectrum of the form
[0, entX].
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Initial Interval Spectra

Definition
A subshift X is computably extendible if uniformly in every σ such that
σ ≺ x ∈ X, one may compute X extending σ.

Definition
A subshift X is uniformly full if

lim
n→∞

min
σ∈X

log |{x � n : σx ∈ X}|
n

= ent(X).

Theorem

If X is computably extendible and uniformly full, then DS(X) = [0, ent(X)]
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Theorem

If X is computably extendible and uniformly full, then DS(X) = [0, ent(X)]

Proof:

We have 0, ent(X) ∈ DS(X) by computable extendibility and Simpson’s
theorem.

Given s ∈ (0, entX), build x by finite extension. Following
Durand-Levin-Shen and Hirschfeldt-Kach, increase the length by the
same amount each time.

If K(x�n)
n > s, choose the extension computably to decrease the

information density.

Otherwise, by uniform fullness there is a way to extend which increases
the information density.
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The Shift Complex Sequence Family

So far every example we have seen has had DS(X) = [0, ent(X)]. But there
are spectra which are bounded away from zero.

The (d, b)-shift-complex
subshift XF , where F = {σ : K(σ) < d|σ| − b} satisfies

d ∈ DS(XF ) ⊆ [d, entropy(X)]

but I do not know if the containment is proper.
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A silly example

The union of two subshifts is a subshift.

Let X be a shift wth dimension spectrum [0, 13 ]. (Such X exists.)

Let Y be a ( 2
3 , b)-shift-complex subshift.

Then there is a gap: 1
3 ,

2
3 ∈ DS(X ∪ Y ), but (1

3 ,
2
3 ) /∈ DS(X ∪ Y ).
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Minimal Subshifts

Definition
A subshift is minimal if it has no proper sub-subshifts.

Restricting attention to minimal subshifts rules out the silly example of the
previous slide. However, some sequences do not belong to any minimal
subshift, so just understanding minimal subshifts will not be enough.
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Minimal Subshifts

Proposition

If X is minimal, DS(X) has a least element.

Proof.

Going in stages, construct X by finite extension, σ0 ≺ σ1 ≺ · · ·
We’ll maintain always that σn is a subword of some y ∈ X, and thus by
minimality, that σn is a subword of every y ∈ X.

At stage n+ 1, find y ∈ X so that dim(y)− inf DS(X) < 1/n.

Let σn+1 = y[k, k +m], where k is the start of σn in y, and m is long
enough that

K(σn+1)

|σn+1|
− dim(y) < 1/n.

Then
K(σn+1)

|σn+1|
− inf DS(X) < 2/n.
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Minimal Subshift Example

The first contructive example of a minimal subshift with nonzero entropy was
due to Grillenberger. The following subshift which uses the same idea was
used by Bruin.

Let E1 be a collection of n1 strings of length l1.

For each i, let Ei be the set of strings made from concatenating all the
strings of Ei−1 in all possible orders. (So ni := |Ei| = ni−1!, and li := |σ|
for σ ∈ Ei satisfies li = ni−1li−1.)

Let M be the subshift whose permitted words are exactly the subwords of
strings from ∪iEi.

Facts

M is minimal. (Every word of Ei appears in every word of length 2li+1.)

For appropriate choices of n1 and l1, M has positive entropy.

Theorem

The subshift M has dimension spectrum [0, ent(M)].
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Questions

What sets can be DS(X)?

Is DS(X) closed?

If not, does it always have a minimum element?

If DS(X) is bounded away from zero, must X contain shift-complex
sequences?

How do these answers change if X is minimal?

If the spectra of minimal subshifts were well-characterized, how would one
use that to explore the spectra of arbitrary subshifts?

What is the dimension spectrum of the shift-complex subshift?

Are there any natural examples of subshifts whose effective spectra are
bounded away from 0?

What is the relationship between effective dimension spectrum and
Medvedev degree?
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