

The Dual Ramsey Theorem and the Property of Baire

Linda Brown Westrick
Joint with Dzhafarov, Flood & Solomon

University of Connecticut, Storrs

February 28th, 2015
South-EAstern Logic Symposium
University of Florida, Gainesville

The Dual Ramsey Theorem

The Dual Ramsey Theorem is a variation of the well-known Ramsey Theorem. Let $[\omega]^k$ denote the set of all k -element subsets of ω .

Theorem (Ramsey's Theorem)

If $[\omega]^k = \cup_{i < l} C_i$, there is $H \subseteq \omega$ such that $[H]^k \subseteq C_i$ for some i .

Instead of k -element subsets of ω , we consider partitions of ω into k pieces.

Notation:

- $(\omega)^k$ is the set of partitions of ω into exactly k pieces.
- $(\omega)^\omega$ is the set of partitions of ω into infinitely many pieces.
- If $x \in (\omega)^\omega$ and y is coarser than x , we write $y \in (x)^\omega$ (in case y is infinite) or $y \in (x)^k$ (if y has k blocks.)

Theorem (Dual Ramsey Theorem, Carlson & Simpson 1986)

If $(\omega)^k = \cup_{i < l} C_i$ is Borel, there is $x \in (\omega)^\omega$ such that $(x)^k \subseteq C_i$ for some i .

What's Known

We write DRT_l^k for the Dual Ramsey Theorem for k partitions and l colors.

Background knowledge:

- As usual, applying DRT_2^k repeatedly yields DRT_l^k .
- Open- DRT_l^{k+1} computably implies RT_l^k . (Miller & Solomon 2004)
- For $k \geq 4$, Open- $DRT_l^k \rightarrow ACA_0$ over RCA_0 . (Miller & Solomon 2004).
- Miller & Solomon 2004 and Erhard 2013: various results related to the Carlson-Simpson Lemma, which is the combinatorial core of the DRT.

Our goal: Understand the topological aspects of the *DRT*.

This is joint work with Damir Dzhafarov, Stephen Flood and Reed Solomon.

The 20 second version of this talk

The only effect fancy topology has on DRT^{3+} is making the comeager approximation to the coloring hard to find.

On the other hand,
fancy topology is the only way to give DRT^2 content.

The Strength of Topologically Clopen DRT^{3+}

Theorem (Dzhafarov, Flood, Solomon, W.)

Let $k \geq 3$. For each computable ordinal α , there is a $\emptyset^{(\alpha)}$ -computable clopen coloring of $(\omega)^k$ such that any homogeneous infinite partition computes $\emptyset^{(\alpha)}$.

Proof:

- For $p \in (\omega)^k$, $p = \{B_0, B_1, B_2, \dots, B_k\}$, where $\omega = \bigcup B_i$ is a disjoint union.
- Let $a_p = \min B_1$ and $b_p = \min B_2$. (Note that $\min B_0 = 0$.)
- Given α , let f be a self-modulus for $\emptyset^{(\alpha)}$ (Gerdes).
- (This means $f \leq_T \emptyset^{(\alpha)}$, and for every g which dominates f , $\emptyset^{(\alpha)} \leq_T g$.)
- Let p be Red if $f(a_p) < b_p$, and Blue otherwise.
- Let $x \in (\omega)^\omega$ be an infinite homogeneous partition, $x = \{X_0, X_1, \dots\}$.
- Then x is homogeneous for Red; for sufficiently large M , consider its coarsening $p = \{X_0, \bigcup_{i=1}^{M-1} X_i, \bigcup_{i=M}^{\infty} X_i\}$
- Then $g(n) := \min X_n$, and g dominates f .

Criticism of the theorem

This theorem doesn't use the interesting pieces of the *DRT*.

- The coloring it produces is topologically clopen.
- It uses no combinatorics, only growth rate.

What this theorem tells us about topology in the *DRT*

If one wanted to consider topologically interesting Borel colorings of $(\omega)^k$, how would those colorings be represented?

- A well-founded Borel code would seem the default.
- But, a $\emptyset^{(\alpha)}$ -computable clopen coloring has a computable $\sim \Delta_\alpha$ code.
- If we allow well-founded Borel codes to represent topology, the coloring of the previous theorem can't be avoided.
- It uses fake topological complexity to hide its Δ_α information.
- In this example, DRT^{3+} could be seen as a strange way to realize the statement "every Borel set has the property of Baire"

The anatomy of the Carlson-Simpson proof

Carlson and Simpson prove the *DRT* as follows.

- Define a variation of DRT^k called DRT_A^k .
- Given an instance of DRT^k , cook up a set X via ω -many nested applications of various instances of DRT_A^{k-1}
- Applying the Carlson-Simpson Lemma (combinatorial lemma) to X gives the desired homogeneous partition.
- As a base case, to solve an instance of DRT_A^0 , start with a comeager approximation to the given coloring and compute a solution from it.

How to prevent coding from masquerading as topology

Idea: Require a Δ_α coloring to also come equipped with a comeager approximation.

(That is, when

$$(\omega)^k = \bigcup_{i < l} C_i, \quad C_i \text{ is } \Delta_\alpha$$

insist that along with a Δ_α code for the C_i , one is provided with Σ_1 codes for open sets U_i and D_n such that $\bigcup_{i < l} U_i$ is dense, each D_n is dense and

$$C_i = U_i \text{ on } \cap_n D_n.)$$

We will see that in fact, the behavior of the coloring on a meager set is irrelevant.

An Alternate Proof of the *DRT*

Definition

A coloring of $(\omega)^k$ is *reduced* if for $p \in (\omega)^k$, the color of p depends only on:

- The least element a of the k th block of p
- All block membership information for all elements $n < a$.

Reduced colorings are clopen.

Theorem (DFSW)

Let $(\omega)^k = \cup_{i < l} C_i$ be any coloring that satisfies the property of Baire.

Uniformly in a comeager approximation to $\cup_i C_i$, there is a reduced coloring of $(\omega)^k$ such that any set homogeneous for it computes (together with the comeager approximation) a homogeneous solution to the original.

So, Borel-*DRT* is reducible to Open-*DRT* if we rule out coding via the Property of Baire.

An Alternate Proof of the *DRT*

Definition

A coloring of $(\omega)^k$ is *reduced* if for $p \in (\omega)^k$, the color of p depends only on:

- The least element a of the k th block of p
- All block membership information for all elements $n < a$.

Let $k_{fin}^{<\omega}$ be the set of all finite strings σ on $\{0, \dots, k-1\}$ such that every symbol appears in σ at least once, and the first appearance of i precedes the first appearance of $i+1$.

The Combinatorial Dual Ramsey Theorem is the *DRT* for reduced colorings.

Theorem (Combinatorial Dual Ramsey Theorem (*cDRT*))

Let $(k-1)_{fin}^{<\omega} = \cup_{i < l} C_i$ be a coloring. Then there is $x \in (\omega)^\omega$ such that for every $p \in (x)^k$, $p \upharpoonright k_p \in C_i$ for some i , where k_p is the first element of the k th block of p .

The Carlson-Simpson Lemma

Theorem (Combinatorial Dual Ramsey Theorem ($cDRT$))

Let $(k-1)^{<\omega}_{fin} = \cup_{i < l} C_i$ be a coloring. Then there is $x \in (\omega)^\omega$ such that for every $p \in (x)^k$, $p \in C_i$ for some i .

Lemma (Carlson-Simpson Lemma)

Let $(k-1)^{<\omega}_{fin} = \cup_{i < l} C_i$ be a coloring. Then there is $x \in (\omega)^\omega$ such that for every $p \in (x)^k$ **which keeps the first $(k-1)$ blocks of x separated**, $p \in C_i$ for some i .

An Alternate Proof of the *DRT*

An alternate proof of the *DRT*:

- Given an instance of DRT^k , apply the Property of Baire to get a comeager approximation.
- Using the comeager approximation, pass to an instance of $cDRT^k$.
- Define a variation of $cDRT^k$ called CSL^k (Carlson-Simpson Lemma).
- Given an instance of $cDRT^k$, cook up a set X via ω -many nested applications of various instances of CSL^{k-1}
- The result X is an instance of $cDRT^{k-1}$.
- The base case is computably true.

Implications

Thus, Borel-*DRT* may be cleanly cleaved into two disparate steps:

- Every Borel set has the Property of Baire
- Combinatorial Dual Ramsey Theorem

Corollary

The Dual Ramsey Theorem holds for any coloring that has the Property of Baire.

(This possibility was mentioned but not pursued in Carlson & Simpson 1986.)

Open Questions

How strong is $cDRT$? (Reverse-math, computable-analysis, descriptive strength.)

Is the Carlson-Simpson Lemma strictly weaker than $cDRT$?

The 20 second version of this talk

The only effect fancy topology has on DRT^{3+} is making the comeager approximation to the coloring hard to find.

On the other hand,
fancy topology is the only way to give DRT^2 content.

The Weakness of DRT^2

Theorem (DFSW)

Open-DRT² is computably true.

Proof:

- Pass computably to $cDRT^2$.
- It colors strings of the form 0^n , so it just colors numbers.
- Some color is used infinitely often, let's say Blue.
- A homogeneous partition is $\{n : 0^n \text{ not Blue}\}, \{n_1\}, \{n_2\}, \dots$

Similarly, if the coloring is given as a comeager approximation, it computes a homogeneous set.

The Weakness of DRT^2

The principle DRT^2 is so weak that unlike DRT^{3+} , it (probably) cannot preserve the computational complexity of its input.

Theorem (DFSW)

$cDRT_2^2$ for Δ_α -coded colorings is computably uniformly equivalent to the statement that for every Δ_α -coded subset of ω , there is an infinite set contained in either it or its complement.

Proof. Suppose we have a Δ_α subset $A \subseteq \omega$.

- This could be considered as a 2-coloring for $cDRT^2$.
- An infinite subset of A or \bar{A} computes a homogeneous partition.
- An infinite homogeneous partition computes an infinite subset of A or \bar{A} .
If the partition is $x = \{X_0, X_1, \dots\}$, the subset is $\{\min X_1, \min X_2, \dots\}$

In general, an infinite subset of A or \bar{A} computes nothing in particular; it could certainly fail to compute A .

Leaving the Property of Baire in DRT_2^2

So, using Δ_α codes for a coloring for DRT^2 does not make the principle too strong.

We have two related strengthenings of $cDRT^2$:

- $cDRT^2$ for Δ_α -coded colorings (of ω)
- DRT^2 for Δ_α -coded colorings (of $(\omega)^2$)

Open questions:

- Is the second principle strictly stronger than the first?
- What if we have a Δ_α code for a coloring of $(\omega)^2$ which we know is clopen?