Computation and information in sofic shifts

Linda Brown Westrick
University of Connecticut

January 7, 2017
ASL Winter Meeting and JMM
Atlanta

Linda Brown Westrick University of ConComputation and information in s

e Symbolic dynamics

Tiling problems

Computation and sofic shifts
Self-similar Turing machine tilings (DRS 2012)

Seas of squares and other sofic shifts

Linda Brown Westrick University of ConComputation and information i

Symbolic Dynamics

Dynamical system (X, T), T invertible. Any z € X has a trajectory
LT Y 2), 2, T(x),. ..

If A is a finite set and p : X — A partitions X, then x has a symbolic trajectory
(T4 (@), p(2), p(T(x)),. ..

Left-shifting the symbolic trajectory of gives the symbolic trajectory of T'(x).

Definition. Let A be a finite alphabet. A subshift is a subset of AZ that is
topologically closed and closed under the shift operation.

A subshift with the shift operation is a dynamical system. Conversely, one can
often recover = from its symbolic trajectory, so subshifts can encode general
dynamical behaviors.

Linda Brown Westrick University of ConComputation and information in s

Classes of subshifts

Equivalent definition. A subshift is a subset X C A% obtained by avoiding
some set of “forbidden” strings.

Example 1: X = {z € 22 : the string 11 never appears in z}
Example 2: X = {z € 22 : no string of the form 10?"1 appears in x}

o A subshift is called a shift of finite type if it can be obtained by
forbidding a finite set of strings.

o A subshift X on an alphabet A is called sofic if there is a shift of finite
type Y on an alphabet B, and a map f : B — A, such that X = f(Y)
(abusing some notation here)

o A subshift is effectively closed if it can be obtained by forbidding a
computably enumerable set of strings; or equivalently, a computable set.

Linda Brown We k Uni y of ConComputation and information in sofic sh

Sofic shifts and regular languages

A subshift X on an alphabet A is called sofic if there is a shift of finite type Y
on an alphabet B, and a map f: B — A, such that X = f(Y)

A set of strings F' is regular if there is a finite automaton which accepts
exactly the strings from F'.

A subshift is sofic if and only if it is obtained by forbidding a regular set F'.

—_ =
o8
ow
o8
ow
—_ =
o8
ow

Linda Brown We k Uni y of ConComputation and information in sofic sh

Two-dimensional subshifts

A two-dimensional subshift is a subset X C AZ® which is topologically closed
and closed under both shift operations.

Equivalently, the two-dimensional subshifts are exactly those obtained by
forbidding a set of rectangular patterns.

Example: Forbid and ; , get the subshift of configurations with

constant columns.

Define SF'Ts, sofic shifts, and effectively closed shifts as before.

Linda Brown Westrick University of ConComputation and information in s

SFT and sofic examples

SFT example *#
Consider an alphabet B of red and blue circles and +
line segments.

The shift of two-colored configurations is an SFT.
Consistent pattern.

Let A be the same alphabet as B, minus the colors.
Letting f : B — A be the map that forgets the colors gives:

Sofic example {}%9
The subshift of two-colorable configurations is sofic. {é
This subshift is not an SF'T, due to the possibility of d}

large cycles.
Forbid due to 5-cycle

Linda Brown We k Uni y of ConComputation and information in sofic sh

SFT and sofic examples

SFT example

The subshift whose elements consist of
non-overlapping annotated black squares on a white
background.

Annotated square.

Letting f be the map that forgets the annotations:

Sofic example

The subshift whose elements consist of
non-overlapping black squares on a white
background.

This subshift is not an SFT, due to large rectangles. Consistent with sea of

squares, do not forbid.

Linda Brown Westrick University of ConComputation and information in s

Outline

Symbolic dynamics

Tiling problems

Computation and sofic shifts
Self-similar Turing machine tilings (DRS 2012)

Seas of squares and other sofic shifts

Linda Brown We Uni f C Jomputation and information in

Tiling problems

A Wang tileset is a finite set of square tiles with colored edges.

Tiles may be placed adjacent to each other if they have the same color on the
edge that they share.

The tiling problem asks: given a tileset, is there a legal way to fill the plane

with tiles from that tileset? (Tiles can be used more than once.)

Every tileset specifies a (possibly empty) two-dimensional SFT. The tiles are
the alphabet, and the forbidden patterns are pairs of adjacent tiles with
mismatched edges.

Conversely, every two-dimensional SF'T can be realized by a tileset.

Linda Brown Westrick University of ConComputation and information in s

Turing computations in tilings/SFT's

Wang (1962) showed how to design tilesets with infinite tilings which depict
space-time diagrams of arbitrary Turing computations.

Given a fixed Turing machine with states ¢; and tape alphabet {0, 1, b}, forbid
all 2 x 3 patterns that could never appear in that machine’s space-time
diagram.

A

a 1l{g Olg b
A A
qs 1llgs blgs b q b

Forbid this jumping head. Anchor symbol.

Result: any configuration that contains the anchor symbol contains the
space-time diagram of the TM on empty input.

Linda Brown Westrick University of ConComputation and information in s

Removing the anchor tile

There is an infinite tiling with anchor tile if and only if the given Turing
machine runs forever.

How to force the anchor tile to appear?

Berger (1966). Finite computations of all sizes, fractally arranged.
Corollary. The tiling problem is undecidable.
Hanf, Meyer (1974). There are nonempty SFTs with no computable elements.

Linda Brown Westrick University of ConComputation and information in s

Symbolic dynamics

Tiling problems

Computation and sofic shifts
Self-similar Turing machine tilings (DRS 2012)

Seas of squares and other sofic shifts

Linda Brown Westrick University of ConComputation and information i

A naive analogy

One-dimensional sofic shifts support hidden finite automaton computation and
are characterized by forbidding regular sets of strings.

Could two-dimensional sofic shifts, which support hidden Turing computation,
be characterized by forbidding computably enumerable sets of local patterns?
No. This is equivalent to asking if the two-dimensional sofic shifts coincide
with the effectively closed shifts.

Every sofic shift is effectively closed, but the inclusion is strict.

Linda Brown Westrick University of ConComputation and information in s

Computation in sofic shifts

Examples of effectively closed, non-sofic shifts:
e The mirror shift
o 2-dimensional shift-complex shift (Rumyantsev-Ushakov 2006)

e Stacked 1-dimensional effectively closed shifts without a synchronizing
word (Pavlov 2013)

Motivating theme: Understand the power and limitations of computation in
two-dimensional sofic shifts.

Linda Brown Westrick University of ConComputation and information in s

Open questions in the area

If X is a one-dimensional shift obtained by forbidding strings from F', its
stacked shift is the two-dimensional shift with the same forbidden strings, now
considered as rectangular patterns.

If X is sofic, then its stacked shift is sofic.

Question (Jeandel). If X is a one-dimensional shift whose stacked shift is
sofic, must X be sofic?

There are even many examples of 1-dimensional non-sofic X, where the

soficity of stacked-X is not known.

Question (old). Is every two-dimensional sofic shift obtainable as image of a
two-dimensional SFT with the same entropy?

Linda Brown Westrick University of ConComputation and information in s

ent progress

Hochman and Meyerovitch (2010). The entropies of the two-dimensional
SFTs and sofic shifts are exactly the right-computably enumerable numbers.

Given an underlying pattern, they use a superimposed Turing computation to
approximate the desired entropy, halting the computation to kill the pattern if
it seems to have too much entropy.

Durand, Romashchenko and Shen (2012). Every effectively closed
two-dimensional shift whose configurations have constant columns is sofic.
(also independently obtained by Aubrun and Sablik 2013).

Unavoidable reliance on hidden Turing computations.

Linda Brown Westrick University of ConComputation and information in s

Definitions:

o For any set S C N, let the S-square shift be the Z2-shift on the alphabet
{black, white} whose configurations consist of seas of non-overlapping
black squares on a white background, where the size of each square is in S.

e Let the distinct-square shift consist of the configurations in which no
finite size of square is repeated.

o A Z2-shift is a-sparse if there is a constant C such that the shift forbids
every N X N pattern with more than CN® black symbols.

Theorem (W):
The following shifts are sofic:

o The S-square shift for any I1 set S.
o Any effectively closed subshift of the distinct-square shift.
@ Any effectively closed a-sparse shift for o < 1.

Linda Brown Westrick University of ConComputation and information in s

Outline

Symbolic dynamics

Tiling problems

Computation and sofic shifts
e Self-similar Turing machine tilings (DRS 2012)

Seas of squares and other sofic shifts

Linda Brown We Uni f C Jomputation and information in

Durand, Romashchenko & Shen (2012)

DRS define a tileset:
e Tiles organize themselves into N x N regions.

(4,5 +1)
(4,7) (i+1,7)
(4,7) Turing
. . . machine
e Each region has a space-time diagram on the
inside, but viewed from the outside, the region
is a tile, or “macrotile”.
@ The macrotiles behave just like the original Image source: DRS 2012

small tiles, but with larger N.

o This behavior is enforced by the computation
happening in the tile.

Linda Brown Westrick University of ConComputation and information in s

Parent Tile, Child Tile

Consider a parent “macrotile” made from an N x N array of child tiles.

The parent computation
@ Accepts the “data” of what colors are being displayed at the edge of the
region as input.
o Analyzes the input to see if the edges make a good macrotile, and Kkills
the computation if not.
e Makes sure its own parent is running the same program.
o Also does other desired computations.

machine

Image source: DRS 2012

Linda Brown Westrick University of ConComputation and information in s

Effectively closed shifts with constant columns

Theorem (Durand-Romashchenko-Shen 2012): Any effectively closed
shift whose elements have constant columns is sofic.
(this result independently obtained by Aubrun-Sablik 2013)

Idea: Given an configuration with constant columns, superimpose TM tiles to
e “read” the common row
e make what has been read available at all levels
e simultaneously, enumerate forbidden Z-patterns

o kill the element if a pattern it contains is enumerated.

Issue: How can a higher-level macrotile learn about what is written on the
pixel level, since it can’t interact with that level directly?

Linda Brown Westrick University of ConComputation and information in s

Parent-child communication

Issue: How can a higher-level macrotile learn about what is written on the
pixel level, since it can’t interact with that level directly?

Solution: pass info up from child to parent
o Children who are sitting on the parent tape “read” it
o Whisper to other siblings about what is there

o If the parent tape does not contain a thing which a child wants the parent
to know, the child kills the tiling.

Linda Brown Westrick University of ConComputation and information in s

Symbolic dynamics

Tiling problems

Computation and sofic shifts
Self-similar Turing machine tilings (DRS 2012)

Seas of squares and other sofic shifts

Linda Brown Westrick University of ConComputation and information i

S-square shift: plan and obstacles

Plan: Given a sea of squares (unrestricted sizes), superimpose TM tiles to
o “read” and record the sizes of squares that appear inside them
@ propagate this information to their parents
e simultaneously, enumerate forbidden sizes

kill the element if one of the collected sizes is enumerated

Obstacles:

o A forbidden-size square can appear once and disqualify the whole sea, so
each tile must record every single size inside itself.

o The parent’s parameter tape becomes too large for children to copy it, yet
each child must make sure the parent received its records.

@ The input to each computation region is large relative to the region; the
algorithm must run in less than quadratic time to fit inside.

Linda Brown Westrick University of ConComputation and information in s

ording all the sizes

A macrotile at level k£ has ~ Nj_1 tape size and a pixel width of
Ly = Ni_1...N1Np.

To record all sizes from a macrotile at level k, ~ Li/ % bits are needed.

For that to fit on the tape, we let N grow so fast Lz/g << Np_1.

In DRS, all bits of the parent’s parameter tape are passed among all children.
Impossible here:

2/3

ka1 > N,f/B >> Nj_1 = length of child tape.

Bits of parent data ~ L

Linda Brown Westrick University of ConComputation and information in s

Communicating with the parent

Idea: Each child nondeterministically chooses what parental information to
share with each of its neighbors, and hopes to receive parental reassurance
about each of its own recorded sizes.

Left: sharing everything

Right: selective sharing

Use a counter to certify the
information is genuinely
from the parent.

Linda Brown Westrick Un of ConComputation and information i

A cooperative game of Ticket to Ride

There are ~ N7 vertices (cities, child tiles), arranged in a square grid.
There are ~ Lifl players (train companies, parental records).

Each vertical or horizontal edge (connector, child side color) has ~ Li/ % tracks.
In any N x N subgrid of vertices, at most ~ (NLj)?/?

that grid.

The players cooperatively win if there is a way to divvy up the tracks so that
every player can connect all their cities together.

players have a city in

The S-square algorithm works if and only if the players can always win.
e =N
G [

L L, |l
=

The players won.

Linda Brown Westrick University of ConComputation and information in s

Multiscale plaid concept

The

players can win the game with a multiscale plaid track pattern:

All players take turns laying vertical tracks, top-to-bottom, as tightly as
reasonable (Li/ % players per vertical track.)

All players lay horizontal tracks in the same fashion. (1st layer of plaid).

This makes natural square subregions, in which each player has a vertical
and horizontal track.

Within each N x N subregion, N (Lj)?/? players have tracks, but only
(N Ly)?/3 players have cities there.

Make another layer of tight plaid, within that subregion only, using only
the players that have cities in that subregion.

This tighter plaid makes smaller subregions, more players drop out.
Recurse in all subregions until some fixed small size of subregion is

reached, then let the small number of remaining players connect directly
to their cities.

Linda Bro

wn Westrick University of ConComputation and information in s

Multiscale plaid analysis

All players make a single connected component that includes all their cities.

T

How many tracks per edge were used?

At each level of recursion, Li/ % tracks per edge.
Some fixed constant number of tracks per edge for the bottom step.

k
Using Nj, = 2%* , there are ~ 2% levels of recursion.
Relative to Li/ 3, this 2¥ is an ignorable log factor.

Linda Brown Westrick University of ConComputation and information in s

Thank you.

